Building a Claude 3 AI Agent with AWS Bedrock, Amazon API Gateway, and AWS Lambda: A Comprehensiv...
11 September 2024 - 5 min. read
Matteo Moroni
DevOps Engineer
S3Bucket: Type: AWS::S3::Bucket Properties: BucketName: 'subdomain.mydomain.com' CorsConfiguration: CorsRules: - AllowedHeaders: - '*' AllowedMethods: - GET - HEAD - POST - PUT - DELETE AllowedOrigins: - 'https://*.mydomain.com' PublicAccessBlockConfiguration: BlockPublicAcls: true BlockPublicPolicy: true IgnorePublicAcls: true RestrictPublicBuckets: true WebsiteConfiguration: ErrorDocument: error.html IndexDocument: index.html S3BucketPolicy: Type: AWS::S3::BucketPolicy Properties: Bucket: !Ref S3Bucket PolicyDocument: Version: '2012-10-17' Statement: - Sid: VPCEndpointReadGetObject Effect: Allow Principal: "*" Action: s3:GetObject Resource: !Sub '${S3Bucket.Arn}/*' Condition: StringEquals: aws:sourceVpce: !Ref S3VPCEndpointIdIt’s worth noticing that “website configuration” has been enabled to allow HTTP requests towards the bucket but at the same time a Bucket Policy denies retrieving any kind of object from it unless a request is coming from the S3’s VPC endpoint, ensuring that only allowed actors passing from the account’s VPC can access that very bucket.
LoadBalancer: Type: AWS::ElasticLoadBalancingV2::LoadBalancer Properties: Name: !Sub '${ProjectName}' LoadBalancerAttributes: - Key: 'idle_timeout.timeout_seconds' Value: '60' - Key: 'routing.http2.enabled' Value: 'true' - Key: 'access_logs.s3.enabled' Value: 'true' - Key: 'access_logs.s3.prefix' Value: loadbalancers - Key: 'access_logs.s3.bucket' Value: !Ref S3LogsBucketName Scheme: internet-facing SecurityGroups: - !Ref LoadBalancerSecurityGroup Subnets: - !Ref SubnetPublicAId - !Ref SubnetPublicBId - !Ref SubnetPublicCId Type: application LoadBalancerSecurityGroup: Type: AWS::EC2::SecurityGroup Properties: GroupName: !Sub '${ProjectName}-alb' GroupDescription: !Sub '${ProjectName} Load Balancer Security Group' SecurityGroupIngress: - CidrIp: 0.0.0.0/0 Description: ALB Ingress rule from world FromPort: 80 ToPort: 80 IpProtocol: tcp - CidrIp: 0.0.0.0/0 Description: ALB Ingress rule from world FromPort: 443 ToPort: 443 IpProtocol: tcp Tags: - Key: Name Value: !Sub '${ProjectName}-alb' - Key: Environment Value: !Ref Environment VpcId: !Ref VPCId HttpListener: Type: AWS::ElasticLoadBalancingV2::Listener Properties: DefaultActions: - RedirectConfig: Port: '443' Protocol: HTTPS StatusCode: 'HTTP_301' Type: redirect LoadBalancerArn: !Ref LoadBalancer Port: 80 Protocol: HTTP HttpsListener: Type: AWS::ElasticLoadBalancingV2::Listener Properties: Certificates: - CertificateArn: !Ref LoadBalancerCertificateArn DefaultActions: - Type: forward TargetGroupArn: !Ref TargetGroup LoadBalancerArn: !Ref LoadBalancer Port: 443 Protocol: HTTPS TargetGroup: Type: AWS::ElasticLoadBalancingV2::TargetGroup Properties: Name: !Sub '${ProjectName}' HealthCheckEnabled: false TargetType: lambda Targets: - Id: !GetAtt Lambda.Arn DependsOn: LambdaPermissionThanks to this template, a public Load Balancer is deployed with a listener on port 80 (HTTP) redirecting on port 443 (HTTPS) with another listener which contacts a Target Group with a specific Lambda function registered on it.
import json from boto3 import client as boto3_client from os import environ as os_environ import base64 from urllib3 import PoolManager http = PoolManager() s3 = boto3_client('s3') def handler(event, context): try: print(event) print(context) host = event['headers']['host'] print("Host:", host) feature = host.split('.')[0] feature = "-".join(feature.split('-')[1:]) print("Feature:", feature) path = event['path'] if event['path'] != "/" else "/index.html" print("Path:", path) query_string_parameters = event['queryStringParameters'] query_string_parameters = [f"{key}={value}" for key, value in event['queryStringParameters'].items()] print("Query String Parameters:", query_string_parameters) http_method = event["httpMethod"] url = f"http://{os_environ['S3_BUCKET']}.s3-website-eu-west-1.amazonaws.com/{feature}{path}{'?' if [] != query_string_parameters else ''}{'&'.join(query_string_parameters)}" print(url) headers = event['headers'] headers.pop("host") print("Headers:", headers) body = event['body'] print("Body:", body) r = http.request(http_method, url, headers=headers, body=body) print("Response:", r) print("Response Data:", r.data) try: decoded_response = base64.b64encode(r.data).decode('utf-8') except: decoded_response = base64.b64encode(r.data) print("Decoded Response:", decoded_response) print("Headers Response:", dict(r.headers)) return { 'statusCode': 200, 'body': decoded_response, "headers": dict(r.headers), "isBase64Encoded": True } except Exception as e: print(e) return { 'statusCode': 400 }Despite being a little tricky to read, operations done here are quite simple: starting from the DNS name which the user exploits to reach the Load Balancer, the Lambda Function processes the request to the S3 Bucket by building the feature’s appropriate subfolder to contact. To ensure the entire process works as expected, a DNS name for each feature must be created.