Come creare un Agent AI con Claude 3, AWS Bedrock, Amazon API Gateway e AWS Lambda e migliorare l...
11 Settembre 2024 - 16 min. read
Matteo Moroni
DevOps Engineer
S3Bucket: Type: AWS::S3::Bucket Properties: BucketName: 'subdomain.mydomain.com' CorsConfiguration: CorsRules: - AllowedHeaders: - '*' AllowedMethods: - GET - HEAD - POST - PUT - DELETE AllowedOrigins: - 'https://*.mydomain.com' PublicAccessBlockConfiguration: BlockPublicAcls: true BlockPublicPolicy: true IgnorePublicAcls: true RestrictPublicBuckets: true WebsiteConfiguration: ErrorDocument: error.html IndexDocument: index.html S3BucketPolicy: Type: AWS::S3::BucketPolicy Properties: Bucket: !Ref S3Bucket PolicyDocument: Version: '2012-10-17' Statement: - Sid: VPCEndpointReadGetObject Effect: Allow Principal: "*" Action: s3:GetObject Resource: !Sub '${S3Bucket.Arn}/*' Condition: StringEquals: aws:sourceVpce: !Ref S3VPCEndpointIdCome si può notare, è stata attivata la “website configuration” in modo tale da poterci interfacciare con il bucket tramite chiamate HTTP ma allo stesso tempo è presente anche una Bucket Policy che vieta il recupero di un qualsiasi oggetto a meno che la richiesta non passi dal VPC Endpoint di S3, garantendo quindi che solo gli interlocutori che passano dalla VPC dell’account possano accedere al Bucket stesso.
LoadBalancer: Type: AWS::ElasticLoadBalancingV2::LoadBalancer Properties: Name: !Sub '${ProjectName}' LoadBalancerAttributes: - Key: 'idle_timeout.timeout_seconds' Value: '60' - Key: 'routing.http2.enabled' Value: 'true' - Key: 'access_logs.s3.enabled' Value: 'true' - Key: 'access_logs.s3.prefix' Value: loadbalancers - Key: 'access_logs.s3.bucket' Value: !Ref S3LogsBucketName Scheme: internet-facing SecurityGroups: - !Ref LoadBalancerSecurityGroup Subnets: - !Ref SubnetPublicAId - !Ref SubnetPublicBId - !Ref SubnetPublicCId Type: application LoadBalancerSecurityGroup: Type: AWS::EC2::SecurityGroup Properties: GroupName: !Sub '${ProjectName}-alb' GroupDescription: !Sub '${ProjectName} Load Balancer Security Group' SecurityGroupIngress: - CidrIp: 0.0.0.0/0 Description: ALB Ingress rule from world FromPort: 80 ToPort: 80 IpProtocol: tcp - CidrIp: 0.0.0.0/0 Description: ALB Ingress rule from world FromPort: 443 ToPort: 443 IpProtocol: tcp Tags: - Key: Name Value: !Sub '${ProjectName}-alb' - Key: Environment Value: !Ref Environment VpcId: !Ref VPCId HttpListener: Type: AWS::ElasticLoadBalancingV2::Listener Properties: DefaultActions: - RedirectConfig: Port: '443' Protocol: HTTPS StatusCode: 'HTTP_301' Type: redirect LoadBalancerArn: !Ref LoadBalancer Port: 80 Protocol: HTTP HttpsListener: Type: AWS::ElasticLoadBalancingV2::Listener Properties: Certificates: - CertificateArn: !Ref LoadBalancerCertificateArn DefaultActions: - Type: forward TargetGroupArn: !Ref TargetGroup LoadBalancerArn: !Ref LoadBalancer Port: 443 Protocol: HTTPS TargetGroup: Type: AWS::ElasticLoadBalancingV2::TargetGroup Properties: Name: !Sub '${ProjectName}' HealthCheckEnabled: false TargetType: lambda Targets: - Id: !GetAtt Lambda.Arn DependsOn: LambdaPermissionTramite questo template, viene deployato un Load Balancer pubblico con un listener che ascolta sulla porta 80 (HTTP) che effettua una redirect su 443 (HTTPS) su cui è presente un altro listener che però contatta un Target Group su cui è registrata una Lambda.
import json from boto3 import client as boto3_client from os import environ as os_environ import base64 from urllib3 import PoolManager http = PoolManager() s3 = boto3_client('s3') def handler(event, context): try: print(event) print(context) host = event['headers']['host'] print("Host:", host) feature = host.split('.')[0] feature = "-".join(feature.split('-')[1:]) print("Feature:", feature) path = event['path'] if event['path'] != "/" else "/index.html" print("Path:", path) query_string_parameters = event['queryStringParameters'] query_string_parameters = [f"{key}={value}" for key, value in event['queryStringParameters'].items()] print("Query String Parameters:", query_string_parameters) http_method = event["httpMethod"] url = f"http://{os_environ['S3_BUCKET']}.s3-website-eu-west-1.amazonaws.com/{feature}{path}{'?' if [] != query_string_parameters else ''}{'&'.join(query_string_parameters)}" print(url) headers = event['headers'] headers.pop("host") print("Headers:", headers) body = event['body'] print("Body:", body) r = http.request(http_method, url, headers=headers, body=body) print("Response:", r) print("Response Data:", r.data) try: decoded_response = base64.b64encode(r.data).decode('utf-8') except: decoded_response = base64.b64encode(r.data) print("Decoded Response:", decoded_response) print("Headers Response:", dict(r.headers)) return { 'statusCode': 200, 'body': decoded_response, "headers": dict(r.headers), "isBase64Encoded": True } except Exception as e: print(e) return { 'statusCode': 400 }Nonostante non sia di immediata lettura, le operazioni effettuate sono molto semplici: partendo dal DNS name con cui l’utente ha raggiunto il Load Balancer, la Lambda gira la chiamata verso il Bucket S3 costruendo la sottocartella da contattare contenente una determinata feature. Per far si che tutto ciò funzioni bisogna chiaramente creare un DNS name per ciascuna feature.