
Home > AWS

FinOps anti-patterns: What (not) to
do to unlock more budget for
Innovation

22 October 2025 - 2 min. read

Here we are with yet another portmanteau of something and Operations.

This time it's Finance's turn.

Generally, the first encounter with the term FinOps is approached with a certain

superficiality: it's taken for granted that if Operations concerns infrastructure and

Finance means "$$", then the union of the two must necessarily mean "reducing waste

in the cloud", right?

Well, not exactly.

Or rather, not only.

Reducing costs is certainly part of the game, but stopping there would be like thinking

that DevOps only means "automating builds".

FinOps is much more; it's a cultural and operational approach that unites technical,

financial, and business teams to maximize the value of the Cloud, not simply to save a

few dollars.

To clear up any doubts, spending a paragraph explaining some FinOps concepts in

broad strokes is worth it. If you already know them, feel free to skip it :)

What does FinOps mean?

First, let's clarify a fundamental point: FinOps doesn't introduce revolutionary

concepts. Instead, it's  a structured way of bringing attention to efficiency back into

focus. The framework was created to maximize the business value of the Cloud,

https://blog.besharp.it/
https://blog.besharp.it/
https://blog.besharp.it/category/aws-en/
https://blog.besharp.it/


enabling rapid, data-driven decisions and creating shared financial responsibility

among engineering, finance, and business.

In this sense, it represents a real paradigm shift: cost management is no longer a post-

mortem activity, but becomes an integral part of daily decision-making processes.

The FinOps journey unfolds in three iterative phases that feed into each other: Inform,

Optimize, and Operate.

In the Inform phase, attention ifocuses on collecting and valuing data related to cloud

costs, usage, and efficiency. This data is transformed into analysis and reporting tools

that offer accurate visibility into spending dynamics. This leads to budgeting and

forecasting capabilities and the ability to measure performance through KPIs and

internal or external benchmarks. The elastic and on-demand nature of the Cloud,

together with discount mechanisms, makes continuous monitoring essential: only with

timely information is it possible to anticipate spending, prevent surprises, and maintain

a return on investment consistent with business objectives.

The Optimize phase, on the other hand, focuses on efficiency. This is when the

collected data is used to identify concrete optimization opportunities, for example, by

resizing underutilized resources, adopting more modern architectures, automating

workload management, and reducing waste. Rates also become a field for

optimization, thanks to discount models such as Reserved Instances and Savings Plans.

This phase is not limited to cutting costs but aims for continuous dialogue between



the different teams to ensure that cloud performance always remains aligned with the

organization's strategic objectives.

Finally, in the Operate phase, changes are consolidated. This is where governance

policies are defined, compliance is monitored, people are held accountable, and a

culture of shared responsibility is spread. Technical, financial, and commercial teams

collaborate constantly, making iterative and incremental decisions based on the

evidence collected in the previous phases. The approach is cyclical: each action leads

to new information, which fuels further optimizations and makes processes more

mature and aware.

The value of FinOps lies precisely in this continuous cycle. Informing, optimizing, and

operating are not isolated moments but phases that intertwine and repeat, leading the

organization to an increasingly evolved cloud management capable of generating

concrete value.

Three Common Anti-patterns

Now that we've clarified what FinOps is and how it works, let's look at where things

can go wrong.

As consultants, we're certainly no strangers to desperate situations. Sometimes,

however, the most insidious errors don't manifest immediately: they remain silent

during the design and implementation phases, only to reveal themselves after going

live in production. And it's precisely then, when the infrastructure begins to scale and

costs increase, that it's too late to intervene and the bill (literally) arrives.

These errors result from designs that have considered only technical requirements,

ignoring (or superficially treating) the economic impact of architectural choices. An

approach that contrasts with the "shift-left" of costs: bringing financial awareness from

the earliest stages of design, when decisions can still make a difference.

But how cool is serverless?

Let's face it: the concept of serverless is fascinating.

The idea of not having to manage infrastructure (nor sysadmins!) is every developer's

dream.



And so, thanks to ease of use and automatic scalability, a serverless architecture is

often chosen even when it's not the most suitable choice.

To make informed decisions, it's necessary to have clear use cases.

Serverless is perfect for:

Applications with variable load: In these situations, the scaling capabilities of

serverless provide maximum benefit.

Microservices or event-driven applications: Each microservice can become a

managed container or a serverless function launched by a trigger.

Economic efficiency for sporadic use: Many serverless services can scale to zero,

making costs null in case of non-use.

It's worth asking a few more questions if you have:

Applications with constant load: A virtual machine will always cost less and perform

better for constant use.

Applications requiring low latency: If latency is critical, serverless might not be the

best choice due to "cold starts."

Fear of vendor lock-in: The serverless approach leads to greater integration with the

cloud provider, which not all requirements allow.

Let's take a suitably simplified example of comparing the running costs of a Lambda

Function and an EC2 machine. Lambda costs grow more or less linearly with usage

time, while the costs of a certain size EC2 machine, always on, are fixed. Furthermore,



it's important to consider that the example EC2 has greater computational power and

a disk.

Clearly, this reasoning falls apart if the workload varies greatly over time. An EC2

machine that is always on has infinitely higher costs than a Lambda executed

sporadically.

More generally, Modeling is a cornerstone principle of FinOps that requires modeling

the load profile and cost trends over time before making architectural decisions. This

approach integrates economic analysis as a primary non-functional requirement (NFR),

ensuring that the initial design is sustainable and aligned with the goal of maximizing

long-term business value.

As Werner Vogels also reminds us in his project The Frugal Architect:

“a well-designed architecture is one that balances performance, resilience, and cost

over time”.

In other words, being “frugal” does not mean spending less, but spending better by

building systems that scale sustainably without compromLogging like no

tomorrowising quality.

Logging like no tomorrow



Those who do our job know that logs and metrics are fundamental to understanding

the health of an infrastructure. Two of the most common solutions on AWS for

centralized log management are Amazon CloudWatch Logs and Amazon OpenSearch

Service. Both offer robust functionalities, but the choice between them largely

depends on the specific requirements of the use case, data volume, query complexity,

and available budget.

Native, well-integrated, and simple to use, CloudWatch is almost always the default

choice. During a project kickoff, merely hearing about the costs and complexity of

OpenSearch then removes any doubt. Unfortunately, however, even this time the

simplest solution is not necessarily the best; as always, the best solution is: it depends.

The crucial difference lies in the economic model. CloudWatch's consumption-based

approach can quickly escalate costs with an increase in the number of high-cardinality

metrics, sampling frequency, and ingested and stored logs. A managed OpenSearch

cluster, on the other hand, introduces a more "tiered" cost: nodes are sized, and

volume is absorbed, with a cost that scales more predictably. Beyond a certain volume

threshold, moving high-volume logs and custom metrics to OpenSearch (while

keeping essential heartbeats and alarms in CloudWatch) proves significantly more

efficient.

In the following example, a large-scale application was considered, based on EC2 in

autoscaling and with an average of ten thousand daily users making an average of one

hundred calls each. The single log record is quite large: 4kB. Finally, it is important to

consider that the analysis took into account oversized OpenSearch instances, so as to

avoid problems with scarce resources and allow for data analysis operations.

From the graph, it can be seen that for a limited number of virtual machines,

Cloudwatch remains economically advantageous, but when the instances are in a

medium/high number, the cost of OpenSearch reaches a plateau, while that of

Cloudwatch continues to rise linearly.



A non-functional requirement specifies the criteria that can be used to judge a

system's operation (accessibility, availability, scalability, ...), but what is often

overlooked is the cost. Projects can fail because costs are not considered at every

stage of the business: from design to development to operation.

From a Frugal Architect perspective, this means introducing economic awareness

already in the design phase: every metric collected, every retention policy, and every

log stream must be intentional.

"Measure everything but pay attention to what you keep", Vogels would say.

To Tenancy or Not to Tenancy

Your SaaS is gaining traction: increasing customers, demands for data isolation, and

pressure on operational costs. The temptation might be to dedicate a complete

installation (Single tenancy) for each client, replicating load balancers, EC2 instances,

RDS databases, messaging queues, and so on. While this might seem like a tidy

approach initially, this model presents critical issues: costs grow linearly with each new

contract, management complexity explodes (upgrades and patches multiply), and

margins quickly evaporate.

A well-designed multi-tenancy allows for secure sharing of resources and

infrastructure, maintaining logical isolation between clients.

The main options are:

1. Total Sharing: sharing of the application layer and the database (with logical

separation by schema or through row-level controls).



2. Hybrid Approach: shared application with a dedicated database per tenant,

reserving this option only for premium clients or those with particularly stringent

isolation requirements.

Security remains an absolute priority, but it is achieved through logical isolation (data

separation via code and configuration), rigorous policies, per-tenant encryption, and

advanced observability to prevent "noisy neighbors" (clients that negatively affect the

performance of others), rather than by duplicating the entire infrastructure.

The example diagram this time is very simple. As mentioned previously, costs with

single-tenant installations increase linearly with the number of installations. It is more

difficult to outline the costs of the multi-tenant approach; for this analysis, we

considered an initial increase of about 50%, decreasing as the number of clients

increases.

Sustainable systems align costs with revenue curves. In a multi-tenant architecture,

cost growth is much flatter; each additional customer brings positive margins rather

than the need to maintain a new dedicated "mini-platform." Avoiding infrastructure

cloning is not just a matter of architectural elegance, but it's what allows the business

to scale sustainably, without blowing up the income statement.

Summing up

All of the anti-patterns we have examined have one thing in common.: they arise from

decisions made by considering costs as an "afterthought" problem, something to be

addressed when the application is already in production. But by then it's too late: the

architecture is defined and modifying it becomes costly and risky.

The real lesson of FinOps is to bring awareness to the very first phases of the software

life cycle. This "shift-left" of costs means treating economic impact as a requirement



Andrea Pusineri

DevOps Engineer @ beSharp. I love solving problems and I'm back belt of finding them.

Linux enthusiast and security guy wannabe, I like to play CTFs, but in my spare time I'm an

avid comic/manga/book reader. btw I use Arch

Nicola Ferrari

Cloud Infrastructure Line Manager @ beSharp and AWS authorized instructor champion.I

live my life one level at a time getting superpowers by collecting caffeine hidden here and

there in my daily map. I’m a hardened internet surfer (yes, I surfed the whole internet…

twice!) and tech-addicted with a passion for computers and networking. Building great IT

things all nice and tidy contribute to achieving my main goal: the pursuit of perfection!

Copyright © 2011-2025 by beSharp spa - P.IVA IT02415160189

on par with performance and security.

As The Frugal Architect reminds us: "Cost is a non-functional requirement". And like

any self-respecting non-functional requirement, it should be considered from day one.

About Proud2beCloud

Proud2beCloud is a blog by beSharp, an Italian APN Premier Consulting Partner expert

in designing, implementing, and managing complex Cloud infrastructures and

advanced services on AWS. Before being writers, we are Cloud Experts working daily

with AWS services since 2007. We are hungry readers, innovative builders, and gem-

seekers. On Proud2beCloud, we regularly share our best AWS pro tips, configuration

insights, in-depth news, tips&tricks, how-tos, and many other resources. Take part in

the discussion!

https://blog.besharp.it/author/andrea-pusineri/
https://blog.besharp.it/author/andrea-pusineri/
https://blog.besharp.it/author/ferro/
https://blog.besharp.it/author/ferro/
https://www.besharp.it/en/

