
Home > Architecting

From On-Premise Monolith to Cloud
Native: A Real-World Load Balancer
Migration Story

24 September 2025 - 8 min. read

Amazon CloudFront AWS Lambda@Edge Cloud Migration

“We must constantly look at things in a different way.” 

Robin Williams (John Keating) - Dead Poets Society

Ahh, break down the monolith! The classic dev exercise that everyone has done once

in their lives. 

But how about breaking down an infrastructure monolith?

How can we make a big and complex system more agile? We are talking about stuff

that has seen generations of system administrators pass by, adding configurations with

their personal taste.

Behold the mightiest on-premise load balancer for big corporations! It has survived

kernel upgrades, virtualization, breaking changes, and configuration migrations over

the years to the point that no one wants to touch it, even with a 5-meter pole stick! 

We like challenges, so when we were asked to join this near-impossible migration

project, a migration from on-premise legacy systems to AWS cloud-native managed

services while maintaining the website operational, we had a little party. We like to

celebrate when we are assigned these kinds of challenges.

In this article, we will see only a small part of our journey and highlight the approach

and pattern used to make this kind of impossible dream come true.

https://blog.besharp.it/
https://blog.besharp.it/
https://blog.besharp.it/category/architecting-en/
https://blog.besharp.it/tag/amazon-cloudfront-en/
https://blog.besharp.it/tag/aws-lambdaedge/
https://blog.besharp.it/tag/cloud-migration/
https://blog.besharp.it/


The beast

Imagine this: a corporate website born in the mid-90s that saw the entire Internet

transformation: starting with a simple static and cringey website with <blink> tags and

animated gifs later to become a design marvel and the key point for everything

business related: meetings, calendars, private and public intranet (for contractors and

internal staff with different Identity providers and authentication rule), marketing

micro-website using multiple installation of the omnipresent WordPress stack. 

Everything is (obviously) routed using a pair of highly available load balancer

appliances and a single DNS domain, with no shared knowledge of whether something

is still alive.

Different identity providers are used, one for internal staff and another for contractors,

adding complexity to an already complex scenario.  A picture is worth a thousand

words, so here is a scaled-down version of the infrastructure.

The Approach

One of my favorite patterns for breaking the monolith is Martin Fowler's “Strangler Fig

Pattern”.

In this approach, you replace an old system incrementally by gradually refactoring

components, keeping the old system alive until you need it.



In our case, we have three different main components:

Backend Load Balancing

An authentication portal that routes requests to the appropriate authentication

servers depending on the user’s domain and using different protocols, such as

Active Directory’s LDAP, OIDC, and SAML.

Application routing for backend selection, based on subpath

We need something that can route requests, allowing us to work behind the scenes

and silently replace components; the same technology should enable us to implement

a Proof-of-Concept architecture to validate our hypothesis.

Lucky for us, Amazon CloudFront exists.

CloudFront as a strangler fig

Amazon CloudFront is a global content delivery network that is easily customizable to

accommodate different needs. Using CloudFront Functions, we can modify HTTP

requests before they reach the server or alter responses before serving a page to the

Client. We can define different backends and route requests. With Lambda@Edge, we

can implement custom application logic and authentication.

Breaking down the load balancer flow

Here’s our strategy: We will replace the load balancer and migrate workloads to the

Cloud, resulting in a shiny new infrastructure. Here's our flow:





First, we have to create a “temporary” Amazon CloudFront distribution with the actual

domain name to test that everything works as expected. We also have to import the

existing certificate into Amazon Certificate Manager (ACM) and configure the legacy

load balancer as the origin; since no DNS entry is altered, the website is safe. To test

our setup, we only have to modify our hosts file, pointing to the CloudFront

distribution's IP addresses.

Once we confirm that everything is okay, we can start our POC for the most critical

part that is not available out of the box on Amazon Cloudfront: authentication. 

By implementing authentication, we can replatform, lift and shift servers to the Cloud,

and decompose our application without touching the legacy load balancer.

We will focus only on the authentication part, because it is crucial to move everything

else to the Cloud and replace the legacy load balancer. Once the authentication is

done, we can leverage Amazon CloudFront origins and behaviors to migrate our

website’s subpaths gradually.

Authentication Flow

The legacy Load Balancer has an internal custom backend (auth.awesomecorp.org)

that implemented authentication. Every request is intercepted, checking for JWTs,

Cookies, and other authentication proof. A load-balancer-hosted page is displayed if a

user tries to access a protected resource without authentication. Once the user enters



the credentials, the load balancer establishes the proper user backend (based on the

username format) and proceeds with the authentication. After the user is

authenticated, it will serve a cookie with different contents, depending on the path of

the application. 

How can we implement this mechanism using only cloud-native services? 

As we said, Lambda@Edge and CloudFront Functions can alter the execution flow, but

how? 

CloudFront intercepts requests and responses at CloudFront edge locations and fires

different events, depending on the state of the HTTP Request: viewer request, origin

request, origin response, and viewer response.

This table summarizes the events and their typical usage:

Event Type Trigger Point Typical Use Case

Viewer Request
When CloudFront receives

a viewer request

URL rewrites,

authentication

Origin Request
Before CloudFront

forwards to the origin

Dynamic origin selection,

header changes

Origin Response
After the origin returns

the response

Security headers, error

handling

Viewer Response
Before CloudFront sends a

response to the viewer

Cookie injection,

personalization

As a rule of thumb, CloudFront functions can be used to alter simple text. When the

implementation logic becomes complex and you need to query external services,

Lambda@Edge becomes handy.

An extensible serverless authentication mechanism

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-edge-event-request-response.html


The authentication flow works by leveraging only serverless components, using a

custom Lambda to authenticate users. This enables us to integrate every mechanism

used at the customer side. The following flow can also be extended for SAML, OIDC,

databases, etc.

When an unauthenticated user initially accesses the CloudFront distribution, a Viewer

Request CloudFront Function checks for the presence of a JWT token. If no valid

token is found, the function redirects the user to a custom login page hosted on a

separate CloudFront distribution backed by an S3 bucket. The user enters their Active

Directory credentials, which are then processed through an API Gateway that forwards

the authentication request to a Lambda function. Lambda performs the authentication

(in this case, an LDAP binding operation against the external Active Directory Domain

Controller). The system generates a JWT token upon successful authentication and

redirects the user to the distribution with the appropriate authentication cookie set.

The flow becomes streamlined for authenticated users: the Viewer Request CloudFront

Function validates the existing JWT token and forwards the request to the backend

service while including the authorization header for user verification. Responses flow

back through an Origin Response Lambda@Edge function that monitors for

authentication failures (401 status codes) and automatically expires the token when

necessary, forcing users to re-authenticate if their session becomes invalid.



Here’s a description of the flow: 

1. Unauthenticated user

1. [Green Arrow] The external user contacts the CloudFront distribution.

2. [Green Arrow] The CloudFront distribution executes the Viewer Request

CloudFront Function, which verifies whether the JWT token has been sent in the

request.

3. [Red Arrow] Being an unauthenticated user, the Viewer Request CloudFront

Function will answer with a redirect to the customized login page.



4. [Red Arrow] The customized login page is served by the auth.awesomecorp.com

CloudFront distribution that points to the S3 Bucket hosting the static website.

5. [Red Arrow] The user enters his credentials and clicks the login button. The

customized login page sends a request to the API Gateway.

6. [Red Arrow] The API Gateway forwards the login request to the LDAP Binding

Lambda.

7. [Red Arrow] The LDAP Binding Lambda performs selects the proper

authentication backend and performs an LDAP Binding request to the selected

Active Directory Domain Controller 

8. [Orange Arrow] The Active Directory Domain Controller answers the request with

the LDAP Binding operation result.

9. [Orange Arrow] If the LDAP Binding succeeds, the LDAP Binding Lambda will

answer the API Gateway with a status code 200.

10. [Orange Arrow] The API Gateway will forward the response to the customized

login page.

11. [Orange Arrow] The customized login page will forward the response to the

auth.awesomecorp.com CloudFront distribution, redirecting the user to the

www.awesomecorp.com distribution while setting the JWT Token

The user is now authenticated and will follow the flow described in the next section.

2. Authenticated user

1. [Green Arrow] The external user contacts the www.awesomecorp.com CloudFront

distribution.

2. [Green Arrow] The CloudFront distribution executes the Viewer Request

CloudFront Function, which verifies whether the JWT Token has been sent in the

request.

3. [Green Arrow] Being an authenticated user, the Viewer Request CloudFront

Function forwards the request to the backend host, which will verify the user,

4. [Blue Arrow] The backend service answers the request, sending it to the

CloudFront Distribution

5. The Origin Response Lambda@Edge verifies that the answer has a status code

different from 401.



Damiano Giorgi

6. [Blue Arrow] The Origin Response Lambda@Edge forwards the answer to the

user if the status code is different from 401; otherwise, it will expire the JWT

token, making the user unauthenticated.

Next steps

Once implemented, this flow can be extended and modified, allowing us to move and

refactor the backend services safely and without impacting the website's availability. 

Even for longer migrations, we can put a subsection into “maintenance mode” by

hosting a static webpage in an S3 bucket.

Dismantling an infrastructure monolith is not only possible; it can also be done

elegantly. By leveraging proven architectural patterns and powerful tools like Amazon

CloudFront, CloudFront Functions, and Lambda@Edge, a legacy system can be

transformed into a modern, scalable, and maintainable platform. 

Sometimes, innovation simply requires looking at things from a different perspective.

Are you dealing with old load balancers? Do you have different migration paths and

patterns in mind? Let us know in the comments!

About Proud2beCloud

Proud2beCloud is a blog by beSharp, an Italian APN Premier Consulting Partner expert

in designing, implementing, and managing complex Cloud infrastructures and

advanced services on AWS. Before being writers, we are Cloud Experts working daily

with AWS services since 2007. We are hungry readers, innovative builders, and gem-

seekers. On Proud2beCloud, we regularly share our best AWS pro tips, configuration

insights, in-depth news, tips&tricks, how-tos, and many other resources. Take part in

the discussion!

https://blog.besharp.it/author/damiano-giorgi/
https://blog.besharp.it/author/damiano-giorgi/
https://www.besharp.it/en/


Ex on-prem systems engineer, lazy and prone to automating boring tasks. In constant search

of technological innovations and new exciting things to experience. And that's why I love

Cloud Computing! At this moment, the only "hardware" I regularly dedicate myself to is that

my bass; if you can't find me in the office or in the band room try at the pub or at some

airport, then!

Copyright © 2011-2025 by beSharp spa - P.IVA IT02415160189


