
Home > Architecting

Event-Driven Architectures
demystified: from Producer to
Consumer

30 July 2025 - 8 min. read

Event-Driven Architecture (EDA)

Introduction

This is the first of two articles dedicated to exploring a topic that has recently gained

significant attention: Event-Driven and Event-Based Architectures (EDAs).

While there’s plenty of discussion surrounding these concepts, increased chatter

doesn't necessarily lead to increased clarity. The goal of these blog posts is to cut

through the noise and provide a clear, accessible explanation of the fundamental

principles behind these architectural paradigms.

At the heart of EDAs lie two primary roles: the producer and the consumer. The

producer is responsible for generating and dispatching a message. On the other end,

the consumer receives this message and reacts to it, typically by executing a specific

business logic or triggering a workflow. This interaction forms the backbone of how

information flows in EDAs.

The event semantics

The object transmitted from the producer to the consumer is intentionally referred to

using a broad and generic term: message. This deliberate generalization allows for

flexibility, as a message can represent different types of communication depending on

the producer’s intent. Most commonly, messages fall into two categories: commands

and events.

https://blog.besharp.it/
https://blog.besharp.it/
https://blog.besharp.it/category/architecting-en/
https://blog.besharp.it/tag/event-driven-architecture-eda/
https://blog.besharp.it/

A command message is used when the producer intends to request a specific action

from the consumer—essentially instructing it to perform a task. Commands are

typically imperative and expect a certain outcome or side effect. In contrast, an event

message serves as a notification that something has already happened—often

representing a change in state or the occurrence of a significant business event. Unlike

commands, events do not expect any direct response or action from the consumer; the

consumer simply reacts if and how it chooses.

This distinction between commands and events is fundamental in understanding how

components communicate in EDAs. It also shapes how systems are designed.

Message channels

A producer sends messages through message channels, which act as highways to

reach consumers. As Gregor Hohpe aptly notes in one of his writings, Event-Driven

Architectures are commonly associated with Publish-Subscribe Channels, since

multiple recipients may be interested in reacting to a single event. This is in contrast to

Point-to-Point Channels, which are typically used for delivering commands or

document-style messages to a single, specific consumer.

In the AWS ecosystem, these two types of channels are well represented: SQS Queues

exemplify Point-to-Point Channels, while SNS Topics are a clear implementation of

Publish-Subscribe Channels. With SQS Queues, each message is directed to a single

consumer—usually a worker or application polling the queue—ensuring that it is

processed once and only once. In contrast, SNS Topics allow a single message to be

delivered to multiple consumers, known as subscribers, who have registered their

interest in that topic. This model enables decoupled communication where events can

propagate to several systems simultaneously, supporting scalability and extensibility.

Point-to-Point Message Channel

Publish-Subscribe Message Channel

Gregor Hohpe’s Enterprise Integration Patterns provides canonical definitions for both

patterns, and these ideas are foundational for modern EDAs.

The Dimensions of Coupling

When we connect a producer to a consumer via a message channel, we introduce a

certain type of coupling. One of the core promises of EDAs is to maximize the

independent variability of producers and consumers—achieving what’s commonly

referred to as loose coupling. This means components (in particular, consumers)

should be able to change with little to no impact on the rest of the system.

But coupling isn't binary; systems aren't simply "coupled" or "decoupled." In practice,

coupling spans multiple dimensions, each affecting a different aspect of system

behavior. Let's explore the five key dimensions of coupling—and how various message

channel types support or hinder flexibility across them.

Temporal Coupling

What it is: Time-based dependency between producer and consumer.

Typical consumer changes: Becomes temporarily unavailable, slows down due to

latency or load.

In tightly coupled, synchronous systems, a producer must wait for the consumer to

respond. This creates fragility—if the consumer is unavailable, the producer is stuck.

Message channel support:

Both point-to-point (e.g., SQS) and pub/sub (e.g., SNS) channels decouple

components in time through asynchronous messaging.

https://www.enterpriseintegrationpatterns.com/

The producer emits a message and moves on. Consumers pull or receive messages

when ready.

This decoupling improves fault tolerance and resilience, as producers don’t depend on

the consumer’s immediate availability.

Location Coupling

What it is: The producer’s awareness of the consumer’s network location or address.

Typical consumer changes: Moves to a new host, region, or is scaled horizontally.

In traditional RPC-based systems, producers must know exactly where consumers live.

Any network change may require reconfiguration.

Message channel support:

Message brokers (e.g., SQS, SNS, EventBridge) remove the need for direct addressing.

The producer sends to a channel or bus, not to a known endpoint.

This allows consumers to move or scale out without impacting the producer—enabling

location transparency and deployment flexibility.

Space Coupling

What it is: Assumes shared infrastructure or physical proximity.

Typical consumer changes: Moves to a different VPC, region, or is separated via

intermediary layers (e.g., proxies or gateways).

Space coupling is about assumptions around network topology. If producers and

consumers are tightly coupled in space, they must live close—physically or virtually.

Message channel support:

Both point-to-point and pub/sub systems support space decoupling.

Intermediaries like brokers and event buses facilitate cross-network or multi-region

communication.

This enables architectural flexibility, especially in distributed systems, hybrid cloud, or

multi-account setups.

Topology Coupling

What it is: The ease (or difficulty) of adding new consumers.

Typical consumer changes: A new consumer application needs to receive the same

events.

This is where the distinction between channel types becomes critical.

In point-to-point channels like SQS, only one consumer can successfully receive each

message. Adding a second consumer to the same queue is an anti-pattern: it creates

race conditions, where only one application gets the message, while the other misses

it.

In contrast, publish-subscribe channels like SNS are designed to support multiple

consumers. Each subscriber receives a full copy of the message, independently.

Message channel implications:

Point-to-point: Not suitable for dynamic or growing topologies.

Pub/Sub: Ideal for extensible architectures where new consumers can be added

without modifying the producer.

While these traditional patterns address many use cases, they can be limiting when

you want the flexibility to deliver a message to a specific set of consumers—without

changing your producer or duplicating infrastructure.

Keep that in mind—we’re coming back to it!

Format and Semantic Coupling

What it is: Tight binding between producer and consumer at the data level.

Typical consumer changes: Needs to evolve the schema, rename a field, or redefine a

value.

Even if systems are decoupled in time and topology, they may be coupled by the

structure or meaning of messages.

Format coupling: The consumer depends on exact field names or types.

Semantic coupling: The consumer depends on the meaning of a field, which may

change subtly over time.

Message channel implications

Most channels—whether SQS, SNS, or EventBridge—don’t enforce structure. It's up to

you to manage this coupling explicitly.

Tools like JSON Schema, Avro, or Protocol Buffers, and techniques like schema

versioning and backward-compatible changes, are key to minimizing risk.

Coupling dimensions recap

Each dimension of coupling reflects a different kind of dependency between

components. Message channels like SQS and SNS help decouple producers and

consumers across several of these dimensions—but they aren't perfect for all use

cases.

Where point-to-point channels fall short—especially in topology flexibility—tools like

Amazon EventBridge offer a more dynamic and scalable model. EventBridge is a

serverless event bus that allows you to route events to one or more consumers based

on flexible, content-based rules. Unlike traditional point-to-point messaging—where

adding a new consumer can introduce race conditions or require architectural changes

—EventBridge decouples routing logic from the producer. This means you can direct

the same event to multiple consumers, or selectively to just one, without modifying

upstream code or duplicating messages.

By supporting both publish-subscribe and point-to-point communication patterns

from a single event stream, EventBridge fills the gap left by conventional messaging

tools. With built-in event filtering, targeted delivery, and many-to-many routing, it

enables loosely coupled systems that are far easier to evolve and extend.

In the next part of this series, we’ll move from theory to practice—diving into how to

apply these concepts using EventBridge to build resilient, event-aware systems with

clarity and control.

Event-Driven or Event-Based?

By now, you’ve likely got a solid high-level sense of what it means for a system to work

with events, which will help as we move into the practical side of things. In today’s

software landscape, the terms event-driven and event-based are often used

interchangeably, but they actually refer to different perspectives. At a high level, an

event is simply a notification that something has happened—an immutable fact that

cannot be undone.

The key distinction lies in the type of events systems respond to. Event-based systems

primarily deal with technical events, such as a file being uploaded or a timer firing. On

the other hand, event-driven systems focus on business events—significant

occurrences within the domain, like a new customer registration or an order being

placed. This difference shapes how we design, build, and communicate about our

systems, helping ensure that software not only reacts to change but does so in a way

that aligns with business goals.

Wrapping Up

In this first part of our journey into EDAs, we’ve laid a solid foundation by unpacking

the fundamental concepts: from understanding the dual nature of messages as

commands or events, to examining the critical role message channels play in shaping

communication patterns, and diving into the multiple dimensions of coupling that

influence how loosely or tightly systems are connected—often more subtly than we

realize.

By gaining clarity on these principles, you’re better equipped to appreciate the true

essence of event-based and event-driven systems beyond the buzzwords. These

concepts form the building blocks for designing flexible, scalable, and resilient

architectures that can evolve alongside business needs.

Eric Villa

Solutions Architect @beSharp | AWS Community Builder | AWS Authorized Instructor

Copyright © 2011-2025 by beSharp spa - P.IVA IT02415160189

This is just the beginning.

In the next article, we’ll get our hands dirty and move from principles to practice—

exploring how these concepts come to life using real-world tools like Amazon

EventBridge, and how to route, filter, and transform events with confidence.

Stay tuned!

About Proud2beCloud

Proud2beCloud is a blog by beSharp, an Italian APN Premier Consulting Partner expert

in designing, implementing, and managing complex Cloud infrastructures and

advanced services on AWS. Before being writers, we are Cloud Experts working daily

with AWS services since 2007. We are hungry readers, innovative builders, and gem-

seekers. On Proud2beCloud, we regularly share our best AWS pro tips, configuration

insights, in-depth news, tips&tricks, how-tos, and many other resources. Take part in

the discussion!

https://blog.besharp.it/author/eric-villa/
https://blog.besharp.it/author/eric-villa/
https://www.besharp.it/en/

