
Home > Architecting

Managed database services on AWS:
choose the right one! Explore the
options for HA, DR, Scalability, and
more

29 January 2025 - 10 min. read

Amazon RDS Aurora Serverless Database Disaster Recovery (DR) High Availability (HA)

“When you ain´t got nothin’, you got nothin’ to lose”

Bob Dylan, Like a Rolling Stone

If you think about this quote, you will find that we always have something: our skills,

expertise, and, obviously, data. While no one can take away your skills and expertise, data

can disappear in many ways, and it is a pain in the neck to find the right solution to

minimize the plethora of issues related to data storage persistence, availability, and

scalability. 

As you may know, AWS offers different kinds and flavors of managed database services;

choosing the right one that fulfills our needs without increasing the bill for unnecessary

features is not easy.

Today, we will explain Amazon’s many declinations for database services in the Cloud to

give you an overview of what and when to choose a service.

Engines: Amazon RDS vs Amazon Aurora

The first confusing factor when approaching managed database services on AWS is the

difference between Amazon RDS (for MsSql, MySQL, PostgreSQL…, etc.) and Amazon

Aurora (MySQL or PostgreSQL).

RDS for... (choose your favorite engine)

https://blog.besharp.it/
https://blog.besharp.it/
https://blog.besharp.it/category/architecting-en/
https://blog.besharp.it/tag/amazon-rds/
https://blog.besharp.it/tag/aurora-serverless-en/
https://blog.besharp.it/tag/database/
https://blog.besharp.it/tag/disaster-recovery-dr/
https://blog.besharp.it/tag/high-availability-ha/
https://blog.besharp.it/


When you choose to deploy an RDS instance, behind the scenes, AWS will deploy and

configure a compute instance containing your engine of choice with the corresponding

supported version. 

You can select the compute and storage size, with an option to automatically scale the

storage until it reaches your chosen upper limit. Operating system and minor engine

patches are applied during a maintenance window. 

You will have to choose when to upgrade for major engine updates. Be aware: if you fall

behind the currently supported version matrix, you will incur additional charges because

you will enter the “Extended support phase.”

Caveats:

Here's a practical example: if you chose to deploy an Amazon RDS for MySQL instance in

October 2022, you received all minor upgrades and entered extended support on February

29, 2024.

Be also aware that if you reach the upper limit for the storage allocated (even with

autoscaling), you will need to resize the storage and experience downtime. Also, you can’t

easily scale down storage, so a blue/green deployment will be required for this kind of

operation. 

Amazon RDS Custom

RDS Custom may be for you if you want more control over the underlying operating system

because you have legacy applications and a Microsoft SQL Server or Oracle database. We

will not cover its architecture in-depth, but it is an option for this specific need. We

recommend using managed services because you can reduce the operational effort and

focus on business. You can find more information on the shared responsibility model for

Amazon RDS Custom here.

Amazon Aurora

Amazon Aurora is a managed service that decouples the database engine and the

underlying storage layer. By adapting this technique, you can worry less about additional

aspects, such as storage replicas and scaling. As for the “traditional” RDS, you have to

choose the computational size, and you will pay for what you use.

If you have ever deployed an Amazon Aurora RDS instance, you may have noted that the

AWS Console doesn’t ask for a size. This is because additional features have been added, so

storage autoscaling is granted. Storage is also automatically replicated across three

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-custom.html#custom-intro.solution


Availability Zones, with each Availability Zone persisting two copies, tolerating the loss of

up to two copies of data. 

In the case of an instance failure, Amazon Aurora RDS will try to self-heal itself by restarting

the relevant services.

Caveats:

Be aware that a single instance will try to self-heal, but downtime will occur. Additionally,

Aurora engine versions are slightly different and don’t follow the release lifecycle of the

standard engines.

If you use a particular set of features (such as MyISAM for MySQL), check if they are

supported.

Aurora Serverless

Aurora serverless pushes the decoupling further by containerizing the computational part

to ease scaling. 

When you deploy Aurora in serverless mode, instead of choosing the bare CPU and

Memory size, you have to select your minimum and maximum size in terms of Aurora

Capacity Units (ACUs). 

An ACU measures resources in terms of RAM, CPU, and Networking; each ACU gives you 2

GB of RAM and a proportional CPU value. Working with ACUs allows you to scale “on-the-

fly” the computational power assigned to your database. 

You can specify the minimum and maximum values (from 0.5 to 256 ACUs) and even

automatically pause your database, so no charges will incur during inactive periods (think

about a development cluster or a workload used only during office hours).

Caveats:

Be aware that, like “traditional” RDS instances, the number of simultaneous connections is

determined by the size of the RAM memory assigned to the cluster. When you configure a

serverless instance, the number of simultaneous connections is determined by the upper

limit of ACUs. If you need more connections, you must change the maximum number of

ACUs and reboot the instance to apply changes.

High Availability: Multi-AZ, read-replicas, let’s clarify! 



Even if the documentation clearly explains the features, we found that many people are

always confused about Multi-AZ RDS Instances, Multi-AZ cluster deployments, and Aurora

read replicas. Let’s tackle this issue! 

First, a Multi-AZ Amazon RDS Instance is a synchronous copy from a primary instance to a

standby replica. You can’t use the standby instance to read data or offload reads; it is only

used as a failover option in case of issues or maintenance. In case of failover, the recovery

occurs in 60 - 120 seconds.

Source:

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.MultiAZSingleStandby.html

You can create Multi-AZ Amazon RDS Clusters. In this case, replication is semi-

synchronous using the native database engine replication, and you can have up to two

accessible read-only instances to offload reads. However, with this configuration, there

could be a replication lag, but the write latency is lower than in a Multi-AZ instance.

Failovers are typically completed in under 35 seconds.



Source: https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/multi-az-db-clusters-

concepts.html#multi-az-db-clusters-concepts-overview

As we said before, data is automatically replicated across three availability zones when you

are using the Aurora engine. You can add up to 15 read replicas to scale reads. In case of a

failure, failover occurs in under 30 seconds). Be aware that when using a multi-az Aurora

Cluster, your application has to use a cluster endpoint managed and updated by Aurora.

Source: https://aws.amazon.com/blogs/database/improve-application-availability-on-amazon-aurora/

Tips and tricks to decrease failover time 



Amazon RDS Proxy can decrease failover time in every case because it manages

connection pooling between applications and your database architecture of choice. 

In addition, you can reduce the number of maximum database connections needed, thus

alleviating spikes in serverless applications.

Be aware that Amazon RDS Proxy is a service that can impact your billing!

Global availability and scalability: Amazon Aurora Global Database vs.

Amazon Aurora Postgres Limitless vs. Amazon Aurora Distributed SQL

Let’s now discover Aurora's distributed flavors. These implementations focus on different

aspects, but they may sound the same.

Amazon Aurora Global Database

Amazon Aurora Global Database focuses on resilience: it takes advantage of the

independence between storage and compute layers to replicate data in a different region. If

you configure a Global Database instance, you’ll end up with a primary cluster (containing a

reader  and a writer instance) and a secondary cluster containing only read replicas. 

Write forwarding is supported, so if you perform a write using the secondary cluster

endpoint, Aurora will take care of that by forwarding it to the primary DB cluster. If your

application is latency-sensitive, be aware that when long distances are involved, the speed

of light is a physical bottleneck that can't be avoided at the time of writing this article!

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-global-database.html

Switchover, Managed Failover, and Manual Failover: the differences

When it comes to resiliency, multiple mechanisms allow tests, schedule maintenance, and,

of course, a safety net in case problems happen. 

If you perform a switchover, everything will be under control, and data will be entirely

replicated to the secondary cluster. Hence, the Recovery Point Objective (RPO) is zero

without experiencing data loss. This operation helps execute planned maintenance,



recovery tests, regional rotation, or failing back from a disaster scenario to the original

region. 

The second option is a managed failover. In a region or service-level outage, a managed

failover will help maintain business continuity by switching the primary and secondary

clusters without waiting for data synchronization. Data loss will happen, but no changes will

be made to the replication topology (except for the cluster role switching). 

A manual failover is a critical operation; you must be sure and understand its implications. It

will break the existing cluster replication by making a standalone cluster and promoting a

read replica to a writer. If you need to fail back, you will have to add a secondary region and

rebuild the replication topology; no automatic failback options are available. 

Bonus tip: if your RTO is not near zero, you can shrink your bill by taking advantage of the

headless configuration: deploy a cluster in a secondary region and terminate the newly

created Aurora instance. Data replication will not stop, and if you start a new instance in the

secondary cluster, it will spin up without issues.

Amazon Aurora PostgreSQL Limitless Database

As the name suggests, this implementation is currently available only for PostgreSQL

engine compatibility. It focuses on scalability by using sharding to distribute data between

nodes, allowing you to scale horizontally for millions of write transactions and petabytes of

data.  

Its architecture slightly differs from the others because when you shard data, you need to

route queries to the correct nodes that can query data. Router nodes can receive queries

and send them to the proper shard owner.



Source: https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/limitless-architecture.html

This scalability doesn’t come without a price on the operational effort: you need to know

how to partition data correctly, and since data is partitioned, you don’t want a “hot shard”

hit by more queries than the others. You will also need to manage shard nodes and track

their load using metrics in CloudWatch. 

To accommodate the load, you can change the capacity of shard nodes, split shards into

more shard groups (but be aware that you cannot merge shards), and add routers.

Caveats

As the name says, this database implementation does not support MySQL compatibility. In

addition, Amazon Aurora PostgreSQL Limitless isn’t available in all regions, and you can’t

modify shard keys (including their value in table rows); you need to delete and re-create

them. You find the complete list of limitations here.

Lastly, check for DDL and DML limitations before architecting your workload.

Amazon Aurora Distributed SQL

With the recent announcement, Amazon Aurora Distributed SQL (DSQL) focuses on

resilience and scalability. It’s a highly available multi-region active-active cluster that

automatically scales and manages infrastructure.

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/limitless-reqs-limits.html#limitless-not-supported
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/limitless-reference.html


While it combines the features of the Global Clusters and Limitless flavors, it has many

limitations at the time of writing this article. It is currently in preview only in selected

regions. It will become more feature-rich in the future, and for some use cases, it could be

enough to grant your application scalability and resiliency without additional operational

effort.

Aurora Distributed SQL limitations

At the time of writing, only PostgreSQL is available, and there are limitations on objects and

operations. You can have a single database per cluster without views, triggers, temporary

tables, or sequences. Foreign keys aren’t supported, and you cannot perform a TRUNCATE,

VACUUM, or create functions using plpgsql (or any other language than standard SQL). 

While it supports ACID operations, transactions cannot have mixed DDL and DML

operations, and they contain at most one DDL statement.

TL;DR

Amazon RDS and Amazon Aurora have different architectures and flavors. You can

choose between a more “traditional” approach by using Amazon RDS (including RDS

custom for corner scenarios) or leveraging the storage and compute decoupling offered

by Amazon Aurora. 

In terms of high availability, Amazon RDS offers Multi-AZ for synchronous replication to a

standby instance and Multi-AZ Clusters with up to two readable standbys. Aurora

automatically replicates data across three Availability Zones and allows up to 15 read

replicas. 

Aurora Global Database replicates data across regions for global availability and

scalability. Aurora PostgreSQL Limitless uses sharding for horizontal scaling, and Aurora

Distributed SQL combines multi-region active-active clusters with automatic scaling.

There are limitations for global architectures and horizontal scaling; check the article for

a more comprehensive list! 

What kind of architecture are you using for your database? Are there any special needs you

need to address? Let us know in the comments!

About Proud2beCloud

Proud2beCloud is a blog by beSharp, an Italian APN Premier Consulting Partner expert in

designing, implementing, and managing complex Cloud infrastructures and advanced

services on AWS. Before being writers, we are Cloud Experts working daily with AWS

https://www.besharp.it/en/


Damiano Giorgi

Ex on-prem systems engineer, lazy and prone to automating boring tasks. In constant search of

technological innovations and new exciting things to experience. And that's why I love Cloud

Computing! At this moment, the only "hardware" I regularly dedicate myself to is that my bass; if

you can't find me in the office or in the band room try at the pub or at some airport, then!

Copyright © 2011-2025 by beSharp spa - P.IVA IT02415160189

services since 2007. We are hungry readers, innovative builders, and gem-seekers. On

Proud2beCloud, we regularly share our best AWS pro tips, configuration insights, in-depth

news, tips&tricks, how-tos, and many other resources. Take part in the discussion!

https://blog.besharp.it/author/damiano-giorgi/
https://blog.besharp.it/author/damiano-giorgi/

