
Home > AI/ML

Building a Claude 3 AI Agent with AWS
Bedrock, Amazon API Gateway, and
AWS Lambda: A Comprehensive
Tutorial
11 September 2024 - 16 min. read

AI Amazon Bedrock Anthropic Claude 3 Generative AI Serverless

Introduction

In the rapidly evolving landscape of artificial intelligence, creating intelligent agents that

can interact with users and API- based systems has become increasingly important.

This tutorial will guide you through the process of building a Claude 3 agent using AWS

Bedrock, exposing it via API Gateway and Lambda, and integrating it with a Pinecone

knowledge base to leverage knowledge augmentation with RAG.

Furthermore, the system will leverage AWS Lambda through Bedrock agents to retrieve

user information directly from a relational database and display it in the chat.

 We'll be focusing on a real-world example: a fictional customer service agent that can

handle queries about electrical connections in Rome, Italy.

This guide is designed for readers with a basic understanding of AWS services and some

programming experience. By the end of this tutorial, you'll have a functional AI agent that

can assist customers with services, retrieve invoice information, and even send emails with

attachments.

Understanding the Components
Before we dive into the implementation, let's briefly discuss the key technologies we'll be

using:

https://blog.besharp.it/
https://blog.besharp.it/
https://blog.besharp.it/category/ai-ml-en/
https://blog.besharp.it/tag/ai-en/
https://blog.besharp.it/tag/amazon-bedrock/
https://blog.besharp.it/tag/anthropic/
https://blog.besharp.it/tag/claude-3/
https://blog.besharp.it/tag/generative-ai/
https://blog.besharp.it/tag/serverless-en/
https://blog.besharp.it/

1. AWS Bedrock and Claude 3: AWS Bedrock is a fully managed service that provides

easy access to foundation models (FMs) from leading AI companies. Claude 3,

developed by Anthropic, is one of the advanced language models available through

Bedrock. It excels in natural language understanding and generation, making it ideal

for creating conversational AI agents.

Amazon Bedrock Knowledge Bases allow you to connect your AI agents to existing

data repositories, enabling them to access and utilize relevant information to enhance

their responses.

Here are some key points about Knowledge Bases and Agents in Amazon Bedrock:

Knowledge Bases use a technique called Retrieval-Augmented Generation (RAG) to

incorporate information from customer data sources into the responses generated by the

foundation models powering the agents.

To connect a Knowledge Base to your data, you specify an Amazon S3 bucket containing

the relevant documents or data files as the data source.

Knowledge Bases provide enriched contextual information to the agents, streamlining

development by offering a fully managed RAG solution.

This abstraction accelerates time-to-market by minimizing the effort required to

incorporate your data into the agent's functionality and optimizes cost by negating the

need for continuous model retraining to use private data.

Amazon Bedrock Agents can perform various tasks such as task orchestration,

interactive data collection, task fulfillment, system integration, data querying, and source

attribution, leveraging the connected Knowledge Bases.

The agents can process natural language inputs from users, preprocess the inputs,

interact with Knowledge Bases and other action groups, orchestrate tasks, and provide

post-processed responses.

2. AWS API Gateway and Lambda: API Gateway is a fully managed service that makes it

easy for developers to create, publish, maintain, monitor, and secure APIs at any scale.

Lambda is AWS's serverless computing service that lets you run code without provisioning

or managing servers. Together, they provide a scalable and cost-effective way to expose

our AI agent to the world

3. Pinecone: Pinecone is a vector database that allows for efficient storage and retrieval of

high-dimensional vectors, making it perfect for semantic search applications.

Designed specifically for storing, managing, and searching vector embeddings, Pinecone

offers a powerful solution for developers and data scientists working on AI projects.

At its core, Pinecone excels in managing vector embeddings, which are numerical

representations of data commonly used in machine learning models. These embeddings

can represent a wide variety of information, from text and images to audio and user

behavior patterns. The service's ability to efficiently store and query billions of these

vectors sets it apart in the realm of data management for AI applications.

One of Pinecone's most notable features is its scalability. The service can effortlessly handle

billions of vectors and process thousands of queries per second, making it an ideal choice

for large-scale applications that demand high performance. This scalability is

complemented by Pinecone's low latency, with query times typically measured in

milliseconds, enabling real-time applications that require instant responses.

The heart of Pinecone's functionality lies in its advanced similarity search capabilities. By

leveraging sophisticated indexing techniques, including approximate nearest neighbor

(ANN) search, Pinecone allows users to quickly find the most similar vectors to a given

query vector, which is crucial for applications such as recommendation systems, semantic

search, and image or audio similarity detection and obviously to prepare RAGs for LLMs. As

a Cloud-native solution, Pinecone offers the advantages of a fully managed serverless

service. This approach significantly reduces users' operational overhead, allowing them to

focus on developing their applications rather than managing infrastructure. The service

provides a straightforward API that integrates seamlessly with various programming

languages and frameworks, making it accessible to a wide range of developers.

Pinecone's versatility is further enhanced by its support for metadata filtering: users can

attach additional information to their vectors and use this metadata to refine search results,

which is very important in scenarios where contextual information plays a crucial role in

determining relevance.

The service also offers robust data management capabilities, including upsert operations

that allow for easy updates and insertions of vector data.

Its combination of speed, scalability, and advanced search capabilities makes it an

invaluable tool for organizations looking to harness the full potential of their vector data.

In our case, we'll use it to store and query tokenized information about a customer of ours's

electrical services taken from the institutional website.

4. Aurora Serverless PostgreSQL v2: Aurora Serverless is an on-demand, auto-scaling

configuration for Amazon Aurora. We'll use it with PostgreSQL compatibility to store and

retrieve customer data efficiently and Aurora Data APIs for database interaction. The

Aurora Data API is a secure HTTPS API that allows you to run SQL queries against an

Amazon Aurora database without needing database drivers or managing connections.

Here are some key reasons why you should consider using the Aurora Data API:

1. Simplify Application Development: The Data API provides an intuitive interface for

interacting with your Aurora database, eliminating the need to manage complex

database drivers and connection pooling. This can accelerate modern application

development, especially for serverless applications like AWS Lambda.

2. Improved Scalability: The Data API automatically handles connection pooling and

sharing between the API and the database. This helps your database applications scale

more efficiently without the overhead of managing connections yourself.

3. Serverless Integration: The Data API enables seamless integration with serverless

services like AWS Lambda, AWS AppSync, and AWS Cloud9, making it easier to build

serverless applications that interact with your Aurora database.

4. Increased Availability: With the redesigned Data API for Aurora Serverless v2 and

Aurora provisioned clusters, there is no rate limit imposed on requests, allowing for

better scalability and availability.

Setting Up the Environment

1. AWS Account Setup: Ensure you have an AWS account with the necessary permissions

to create and manage Bedrock, API Gateway, Lambda, and Aurora Serverless

resources.

2. Pinecone Setup: Create a Pinecone account and set up a new index for storing the

customer's service information.

To subscribe to Pinecone from AWS Marketplace, follow these steps:

1. Sign in to the AWS Management Console with your AWS account.

2. Navigate to the AWS Marketplace and search for "Pinecone".

3. On the Pinecone product page, review the details and pricing information.

4. Choose "Continue to Subscribe" to start the subscription process.

5. Follow the prompts to review and accept the terms and conditions.

6. Configure any necessary settings or options for the subscription.

7. Review the final details and complete the subscription process.

After subscribing, you can access and use Pinecone from within your AWS account: got to

Marketplace > Manage subscriptions > Set Up Product (pinecone entry) > Set Up Account

3. Aurora Serverless PostgreSQL v2: Setup Create an Aurora Serverless PostgreSQL cluster

in your AWS account. Configure the necessary tables for data. (See the guide)

4. Creating the Claude 3 Agent with AWS Bedrock: Accessing AWS Bedrock Navigate to

the AWS Bedrock console and request access to the Claude 3 model: go to this link; select

relevant models and request access. This may take some time for approval.

After model is approved (e.g. Antropic Sonnet 3) you'll need to create an agent: visit this

link and create an agent with the name you prefer.

5. Setup Bedrock Knowledge Base: visit this link to create a KB, select pinecone when

prompted. Use this guide for reference. At some point, you’ll need to create to Secrets

Manager to store the Pinecone secret. After everything is set, you can populate the KB with

data. To do so we just downloaded the text from the relevant Customer webpages but you

can upload all the documents you think will be useful in the KB, supported formats are text

and PDF. If you go for Opensearch Serverless (the AWS native vector DB) you can also

connect internal enterprise data sources directly, such as Sharepoint, Confluence,

Salesforce, and generic web crawlers.

https://aws.amazon.com/getting-started/hands-on/configure-connect-serverless-mysql-database-aurora/
https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/modelaccess
https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/agents
https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/agents
https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/knowledge-bases
https://www.pinecone.io/blog/amazon-bedrock-integration/

6. Defining the Agent's Behavior: Using the following metaprompt, or similar, define the

agent's behavior. This includes specifying its role as a customer's customer service agent,

outlining its main tasks, and setting guidelines for interaction.

Example metaprompt:

You are a Customer customer service agent. Your main task is to help the
customer by answering their questions about services. You have to:

1. Provide information about these services: Interventi sul punto di forn
itura, Illuminazione cimiteriale, Allaccio alla rete elettrica. You can f
ind the information in your knowledge base.

2. List all the customer's invoice. The customer has to provide numero ut
enza and tipo utenza (bollette energia oppure bolletta illuminazione cimi
teriale) in the prompt.

3. Get all the information of a single invoice. The customer has to provi
de numero bolletta in the prompt.

4. Send mail with a single invoice attached. The customer has to provide
numero bolletta and email address in the prompt.

You need to have all the required parameters to invoke the action group.
Don't complete the missing parameters. Ask the customer to provide the mi
ssing one.

If the provided email is formally wrong you have to ask the customer to i
nsert a valid email

If you have found invoices that match the user's criteria print them in a
user friendly format. Always reply in italian.

If you can't find any invoice on the criteria provided by the user, use a
polite tone to let him know that you were unable to find any invoices tha
t met the user's search criteria. Ask them to try again and give them gu
idance on what criteria their missing to get results that best meet their
criteria. You also need to be flexible. If it doesn't match their exact
criteria, you can still state other invoices you have in the desired peri
od.

When you provide answers don't link any vector db source reference.
Don't answer to other topic questions.

7. Implementing the Agent Logic: Create a new Lambda function that will serve as the

backend for our agent. This function will allow Claude to execute operations defined in the

OpenAPI file you need to upload to the agent in the action group. A simple code example

for the lambda is the following:

import json
import boto3

Replace these with your actual ARNs
db_clust_arn = "your_database_cluster_arn"
db_secret_arn = "your_database_secret_arn"

rds_data = boto3.client("rds-data")
s3_client = boto3.client("s3")

def lambda_handler(event, context):
print(event)

agent = event["agent"]
action_group = event["actionGroup"]

Flatten parameters for easier access
flattened_params = {param["name"]: param["value"] for param in ev

ent["parameters"]}

print(flattened_params)

parameters = event.get("parameters", [])
print(parameters)
invoice_number = parameters[0].get("value")
receiver_email = parameters[1].get("value")

Construct SQL query
get_invoice_information_sql = f"""

 SELECT *

 FROM invoices
 WHERE account_number = '{flattened_params['account_number']}'

"""

if flattened_params.get("account_type"):
 get_invoice_information_sql += (
 f" AND account_type = '{flattened_params['account_typ
e']}'"
)

print(get_invoice_information_sql)

Execute SQL query
response = rds_data.execute_statement(

 resourceArn=db_clust_arn,
 secretArn=db_secret_arn,
 database="your_database_name",
 sql=get_invoice_information_sql,

)

print(response)

records = response.get("records")
print(records)

Prepare response
response_body = {"TEXT": {"body": f"{records}"}}

action_response = {
 "actionGroup": action_group,
 "functionResponse": {
 "responseState": "REPROMPT",
 "responseBody": response_body,
 },

}

session_attributes = event["sessionAttributes"]
prompt_session_attributes = event["promptSessionAttributes"]

Construct final Lambda response

lambda_response = {
 "response": action_response,
 "messageVersion": event["messageVersion"],
 "sessionAttributes": session_attributes,
 "promptSessionAttributes": prompt_session_attributes,

}

return lambda_response

Now that we have the Lambda function we can go on and add the Api actions and register

the KB in the agent we created before: go back to the agent dashboard and edit the agent

by adding the knowledge base and adding a new action group.

You can add a new action group by adding instructions and an openapi swagger YAML,

here is our example:

openapi: 3.0.0
info:
 title: Customer invoices service
 version: 1.0.0
 description: APIs for retrieving customer's invoices
paths:
 /list-invoices/:

get:

 summary: recupera la lista di bollette dati numero utenza e tipo
utenza
 description: recupera la lista di bollette, quindi numero bollett
a, periodo e importo, dati numero utenza e tipo utenza
 operationId: listInvoices
 parameters:
 - name: numero_utenza
 in: path
 description: Numero di utenza dell'utente che fa la richesta, è n
ecessario che sia fornito dall'utente
 required: true
 schema:
 type: string
 - name: tipo_utenza
 in: path
 description: Tipo di utenza dell'utente che fa la richiesta, valo
ri ammessi "Energia Elettrica" e "Illuminazione Cimiteriale"
 required: false
 schema:
 type: string
 enum:
 - Energia Elettrica
 - Illuminazione Cimiteriale
 responses:
 "200":
 description: recupera la lista di bollette dati numero utenza e t
ipo utenza
 content:
 application/json:
 schema:
 type: array
 items:
 type: object
 properties:
 numero_utenza:
 type: string
 description: Numero di utenza dell'utente che fa
la richesta
 tipo_utenza:
 type: string

 description: Tipo di utenza dell'utente che fa la
richiesta
 link_pdf_bolletta:
 type: string
 description: S3 URI del pdf della/delle bolletta/
e richieste
 /get-invoices/:

get:
 summary: Recupera tutti i dettagli di una singola bolletta, dato
il numero di bolletta
 description: Recupera tutti i dettagli di una singola bolletta, d
ato il numero di bolletta
 operationId: getInvoices
 parameters:
 - name: numero_bolletta
 in: path
 description: Numero della bolletta, è necessario che sia fornito
dall'utente
 required: true
 schema:
 type: string
 responses:
 "200":
 description: Recupera tutti i dettagli di una singola bolletta, d
ato il numero di bolletta
 content:
 application/json:
 schema:
 type: array
 items:
 type: object
 properties:
 numero_utenza:
 type: string
 description: Numero di utenza dell'utente che fa
la richesta
 tipo_utenza:
 type: string
 description: Tipo di utenza dell'utente che fa la
richiesta

 link_pdf_bolletta:
 type: string
 description: S3 URI del pdf della/delle bolletta/
e richieste
 /list-readings/:

get:
 summary: Recupera tutti le letture per codice contratto
 description: Recupera tutte le letture per codice contratto
 operationId: listReadings
 parameters:
 - name: codice_contratto
 in: path
 description: codice contratto, è necessario che sia fornito dal
l'utente
 required: true
 schema:
 type: string
 responses:
 "200":
 description: Recupera tutti le letture tramite codice contratto
 content:
 application/json:
 schema:
 type: array
 items:
 type: object
 properties:
 codice_contratto:
 type: string
 description: Codice del contratto utenza

 /send-mail/:

get:
 summary: Inviare una mail con allegata la bolletta richiesta, dat
o il numero bolletta e l'indirizzo email del cliente
 description: Inviare una mail con allegata la bolletta richiesta,
dato il numero bolletta e l'indirizzo email del cliente
 operationId: sendMail
 parameters:
 - name: numero_bolletta

 in: path
 description: Numero della bolletta, è necessario che sia fornito
dall'utente
 required: true
 schema:
 type: string
 - name: email
 in: path
 description: Inviare una mail con allegata la bolletta richiesta,
dato il numero bolletta e l'indirizzo email del cliente
 required: true
 schema:
 type: string
 responses:
 "200":
 description: Recupera tutti i dettagli di una singola bolletta, d
ato il numero di bolletta
 content:
 application/json:
 schema:
 type: array
 items:
 type: object
 properties:
 numero_utenza:
 type: string
 description: Numero di utenza dell'utente che fa
la richesta
 tipo_utenza:
 type: string
 description: Tipo di utenza dell'utente che fa la
richiesta
 link_pdf_bolletta:
 type: string
 description: S3 URI del pdf della/delle bolletta/
e richieste

Below you can find the configuration we set in the action group section:

After this has been set you should be able to invoke the agent through the integrated

testing environment, just remember to save and publish the agent before trying. Should

something fails you can find the error in the integrated environment, a very common

mistake is not setting the correct lambda resource policy:

The resource based agentsInvokeFunction statement should be similar to this:

{
 "Version": "2012-10-17",
 "Id": "default",
 "Statement": [

{
 "Sid": "agentsInvokeFunction",
 "Effect": "Allow",
 "Principal": {
 "Service": "bedrock.amazonaws.com"
 },
 "Action": "lambda:invokeFunction",
 "Resource": "arn:aws:lambda:us-east-1:471112860008:function:gener
ic-invoice-request-pg1aj"

}
]
}

8. Setting Up Logging: to set up logging in AWS Bedrock:

Navigate to the AWS CloudWatch console.

Create a new log group specifically for Bedrock logs.

In the Bedrock console, go to the "Settings" section.

Enable logging and select the log group you created.

Choose the log types you want to capture (e.g., request logs, response logs).

Set up log retention policies to manage storage costs.

Consider using CloudWatch Insights to analyze your Bedrock logs for patterns or issues.

You should also enable logging for the Knowledge base.

9. Exposing the Agent via API Gateway: in the lambda console, create a new lambda

function in python. The lambda will use boto3 to invoke the Bedrock agent with the user

prompt, here is our simple example:

import boto3
import json
import random
import string

Replace these with your actual Agent IDs
AGENT_ID = "YOUR_AGENT_ID"
AGENT_ALIAS_ID = "YOUR_AGENT_ALIAS_ID"

bedrock_agent_runtime = boto3.client("bedrock-agent-runtime")

def lambda_handler(event, context):
print(event)

Parse the incoming event body
body = json.loads(event["body"])
print(body)

session_id = body["sessionId"]
input_text = body["message"]
client_code = body["clientCode"]

Invoke the Bedrock agent
response = bedrock_agent_runtime.invoke_agent(

 enableTrace=True,
 agentId=AGENT_ID,
 agentAliasId=AGENT_ALIAS_ID,
 sessionId=session_id,
 inputText=input_text,

)

print(response)

Process the response chunks
resp_text = ""
for chunk in response["completion"]:

 print(chunk)
 if "chunk" in chunk:
 decoded_chunk = chunk["chunk"]["bytes"].decode()
 print(decoded_chunk)
 resp_text += decoded_chunk

Prepare the response
response = {

 "statusCode": 200,
 "headers": {
 "Content-Type": "application/json",
 "Access-Control-Allow-Origin": "*",
 "Access-Control-Allow-Credentials": True,
 },
 "body": resp_text,

}

return response

In the API Gateway console, create a new REST API. Set up a resource and POST method

that will trigger your Lambda function then configure the integration between API Gateway

and your Lambda function. Ensure that the necessary permissions are in place for API

Gateway to invoke Lambda. Deploy your API to a stage (e.g., "prod") and note down the

invocation URL, this is what clients will use to interact with your agent.

10. Testing and Refinement

Use tools like Postman or curl to send requests to your API endpoint and verify that the

agent is responding correctly and test various scenarios, including:

General inquiries about the Customer services

 Requests for invoice listings

Requests for specific invoice details

Refine your agent's behavior by adjusting the metaprompt, fine-tuning the Claude 3 model

parameters, or modifying your Lambda function logic.

Considerations and Best Practices

1. Set up CloudWatch logs and metrics to monitor your Lambda function and API

Gateway. This will help you track usage, detect errors, and optimize performance. Use

the Bedrock logging setup we discussed earlier to gain insights into model

interactions.

2. Be aware of the pricing models for the services you're using:

1. Bedrock charges based on the number of tokens processed

2. API Gateway charges per request

3. Lambda charges based on execution time and memory usage

4. Aurora Serverless charges based on ACU-seconds and I/O operations

Implement appropriate caching strategies and optimize your code to minimize costs.

One of the advantages of this serverless architecture is its inherent scalability. However, be

mindful of any rate limits or quotas, especially for the Bedrock and Pinecone services.

Conclusion

In this tutorial, we've walked through the process of creating a Claude 3 agent using AWS

Bedrock and exposing it via API Gateway and Lambda. We've integrated it with a Pinecone

knowledge base for a Customer services information and connected it to Aurora Serverless

for customer data retrieval. This setup provides a powerful, scalable, and cost-effective

solution for building AI-powered customer service agents. By leveraging AWS's serverless

offerings, you can focus on refining your agent's capabilities without worrying about

infrastructure management. As you continue to develop and improve your agent, remember

to regularly review its performance, gather user feedback, and stay updated with the latest

developments in AI and cloud technologies.

We hope this content will boost your creativity (and business, too!). Were you already

familiar with the topic?

Let us know in the comments!

See you in 14 days on our blog Proud2beCloud!

About Proud2beCloud

Proud2beCloud is a blog by beSharp, an Italian APN Premier Consulting Partner expert in

designing, implementing, and managing complex Cloud infrastructures and advanced

services on AWS. Before being writers, we are Cloud Experts working daily with AWS

services since 2007. We are hungry readers, innovative builders, and gem-seekers. On

Proud2beCloud, we regularly share our best AWS pro tips, configuration insights, in-depth

news, tips&tricks, how-tos, and many other resources. Take part in the discussion!

https://blog.besharp.it/author/matteo-moroni/
https://www.besharp.it/en/

Matteo Moroni

DevOps and Solution Architect at beSharp, I deal with developing Saas, Data Analysis, and HPC

solutions, and with the design of unconventional architectures with different complexity.

Passionate about computer science and physics, I have always worked in the first and I have a

PhD in the second. Talking about anything technical and nerdy makes me happy!

Copyright © 2011-2024 by beSharp spa - P.IVA IT02415160189

https://blog.besharp.it/author/matteo-moroni/

