
Home > Networking & Content Delivery

VPC Lattice: yet another connectivity
option or a game-changer?
12 April 2024 - 4 min. read

Advanced Networking VPC Lattice

"Live as if you were to die tomorrow. Learn as if you were to live forever"

-  Mahatma Gandhi

I like learning new things, and I am lucky because a significant part of my work

involves learning new technologies and evaluating how to use them to solve new and

existing problems.

In the past few years, we described many connectivity options to connect our

workloads running on AWS (Transit Gateways, Load balancing, Shared VPCs,

PrivateLink and Endpoint Services, and VPC peering...) 

Last year, VPC Lattice reached General Availability, offering a new option for us to

explore. You may be wondering why we should learn how to use another service when

we already have so many options to choose from... Well, let's find out!

In this article, we'll see that we needed to add another thing... Let's see what this

service offers, how it differs from the other connectivity options we already know, and

a simple use case.

So, without any further ado, let's dig in!

Where VPC Lattice stands

As we saw in previous articles, microservices are an architectural approach that allows

developers to build and deploy software faster. However, it introduces challenges:Was this article useful for you?

https://blog.besharp.it/
https://blog.besharp.it/
https://blog.besharp.it/category/networking-content-delivery-en/
https://blog.besharp.it/tag/advanced-networking/
https://blog.besharp.it/tag/vpc-lattice/
https://blog.besharp.it/
https://blog.besharp.it/networking-design-approaches-for-landing-zone-based-organizations-on-aws/
https://blog.besharp.it/vpc-shared-vs-multi-vpc-choosing-the-best-suits-for-your-organization/
https://blog.besharp.it/aws-elastic-load-balancing-tips-and-tricks-from-basic-to-pro/


single applications now consist of numerous individual components that can be

distributed in different AWS accounts and must communicate with each other, and

various technologies can be used together: Lambdas, EKS, ECS, and EC2.

We must face tasks like service discovery, traffic routing, authorization, security, and

detailed metrics. There are scenarios where a strict microservice communication and

authorization policy is complex to implement using "classical" network approaches. 

Think about allowing communication only between two microservices in different AWS

accounts, blocking every other traffic without implementing custom solutions and

authentication.

VPC Lattice aims to help organizations overcome these challenges while keeping a

secure and manageable approach.

It enables developers to manage microservices definition, authorization, and

configuration, while administrators can manage infrastructure, network,

communication policies, and governance; we'll see more in the following sections.

VPC Lattice Components

VPC Lattice has some key components: 

Service: a VPC Lattice service represents an application and its resources:

computational (such as lambdas, EKS pods, EC2 instances), listeners (port and

protocols involved), and routing rules to address traffic (weighted routing, path

routing, and so on). The application team typically manages these aspects and can

be autonomously defined. A service can be shared using AWS Resource Access

Manager with other AWS accounts, even outside an organization.

Service Network: a service network is a new concept because it's a logical grouping

of services that facilitates connectivity. It can also be shared using AWS Resource

Access Manager. This kind of resource is usually defined by infrastructure or network

administrators.

Service Directory: the list of service networks that can be used, shared with AWS

RAM

Auth Policies: IAM documents that can define access to resources. Auth policies

differ from IAM policies because they aren't attached to users, groups, or roles but

are used with services and service networks. They can allow a IAM user, a IAM Role,

Yes!

I was expecting something
different

Made with Hotjar Next

Was this article useful for you?

https://www.hotjar.com/feedback-surveys?utm_source=client&utm_medium=poll&utm_campaign=insights


or other services access to the attached service. They define new specific

conditions, such as  

vpc-lattice-svcs:RequestMethod

to filter allowed methods. For a complete list, you can have a look at the

documentation.

Let's see which steps are required to set up VPC Lattice.

Putting all together

Let's briefly look at the roles and steps involved in setting up the communication. 

1. The infrastructure admin defines a Service Network 

2. The infrastructure admin shares the Service Network using AWS RAM

3. The service owner defines a VPC Lattice Service and its authorization policies

4. The service owner associates the Service with the Service Network

5. The infrastructure admin associates the Service Network with the VPCs 

As you can see, there is a certain degree of independence in managing services, so

dependencies between teams and operations are reduced. 

A practical example of VPC Lattice usage

For our example, we will use the sample infrastructure and applications from this URL

and analyze the key components deployed on the AWS Console. 

You can deploy the reference architecture using the instructions contained in the

ReadMe file in the repository.

You can also use three different VPCs belonging to a single account to ease the

deployment process (as we'll do in this article).

 You'll end with this sample infrastructure:

Yes!

I was expecting something
different

Made with Hotjar

Was this article useful for you?

https://docs.aws.amazon.com/vpc-lattice/latest/ug/auth-policies.html#auth-policies-condition-keys
https://docs.aws.amazon.com/vpc-lattice/latest/ug/auth-policies.html#auth-policies-condition-keys
https://github.com/aws-samples/build-secure-multi-account-vpc-connnectivity-applications-with-amazon-vpc-lattice
https://www.hotjar.com/feedback-surveys?utm_source=client&utm_medium=poll&utm_campaign=insights


Image source: https://github.com/aws-samples/build-secure-multi-account-vpc-

connnectivity-applications-with-amazon-vpc-lattice

In our example, App1 and App2 will need to communicate bidirectionally, and App3

will be consumed by App1, App2, and App4.

Image source: https://github.com/aws-samples/build-secure-multi-account-vpc-

connnectivity-applications-with-amazon-vpc-lattice

The deployment process will take about 10 - 15 minutes, and you will see that our

microservices can communicate. 

Bug Alert: there's a missing step in the deployment instructions; these two lines will

make the deployment fail:

export TARGETCLUSTER1={TARGET_GROUP_ARN}
export TARGETCLUSTER2={TARGET_GROUP_ARN}

You need to change these exports using values from the VPC lattice target groups. 

Yes!

I was expecting something
different

Made with Hotjar

Was this article useful for you?

https://www.google.com/url?q=https://github.com/aws-samples/build-secure-multi-account-vpc-connnectivity-applications-with-amazon-vpc-lattice&sa=D&source=docs&ust=1712841754699496&usg=AOvVaw2XpSZ9m6Ig-Q2cSCzQKJRF
https://www.google.com/url?q=https://github.com/aws-samples/build-secure-multi-account-vpc-connnectivity-applications-with-amazon-vpc-lattice&sa=D&source=docs&ust=1712841754699496&usg=AOvVaw2XpSZ9m6Ig-Q2cSCzQKJRF
https://www.google.com/url?q=https://github.com/aws-samples/build-secure-multi-account-vpc-connnectivity-applications-with-amazon-vpc-lattice&sa=D&source=docs&ust=1712841754699496&usg=AOvVaw2XpSZ9m6Ig-Q2cSCzQKJRF
https://www.google.com/url?q=https://github.com/aws-samples/build-secure-multi-account-vpc-connnectivity-applications-with-amazon-vpc-lattice&sa=D&source=docs&ust=1712841754699496&usg=AOvVaw2XpSZ9m6Ig-Q2cSCzQKJRF
https://www.hotjar.com/feedback-surveys?utm_source=client&utm_medium=poll&utm_campaign=insights


For TARGETCLUSTER1, use the k8s-frontend-default arn; for TARGETCLUSTER2, use

the arn for k8s-backend-default. This is a sample from our deployment:

When the CloudFormation deployment finishes, you should have these

CloudFormation stacks:

Let's see the resources created to describe them. First, the service network:

As you can see, four services are associated; you can also see VPCs associated with

the service network:

Yes!

I was expecting something
different

Made with Hotjar

Was this article useful for you?

https://www.hotjar.com/feedback-surveys?utm_source=client&utm_medium=poll&utm_campaign=insights


Now VPC Lattice target groups:

Our Lambda, Autoscaling group, and EKS are added as targets, and like ELB target

groups, you can see metrics and define health checks.

Note that to register our targets managed by EKS clusters, we had to deploy the

Gateway API Controller Class into the cluster and register the service using the

configuration deployed with the commands:

kubectl config use-context cluster1
kubectl apply -f ./vpc-lattice/routes/frontend-export.yaml

kubectl config use-context cluster2
kubectl apply -f ./vpc-lattice/routes/backend-export.yaml

Last but not least, let's see the defined services. You can access them using the DNS

domain name defined by VPC Lattice

Yes!

I was expecting something
different

Made with Hotjar

Was this article useful for you?

https://www.hotjar.com/feedback-surveys?utm_source=client&utm_medium=poll&utm_campaign=insights


You can find the complete list of domain names defined by looking at the Outputs of

the CloudFormation stack named "lattice-services":

Each service also has its routing; in this case, you can see that /backend path for

service3 forwards to cluster2, while /lambda forwards requests to the lambda

application:

Now that you have a deployed infrastructure, feel free to experiment and modify the

behaviour of your application and environment (why don't you try IAM authentication

between services? ). 

This is only a starting point, and you can also find an excellent AWS workshop with a

good walkthrough here.

Last but not least: is VPC Lattice the right technology for my use case? 

Yes!

I was expecting something
different

Made with Hotjar

Was this article useful for you?

https://catalog.workshops.aws/handsonwithvpclattice/en-US/labs/lab1/targetgroup
https://www.hotjar.com/feedback-surveys?utm_source=client&utm_medium=poll&utm_campaign=insights


The correct answer is, as always: "It depends". Let's evaluate the limits and their

impact on our design. 

The first is the mandatory one-to-one association between a VPC and a Service

Network. Once you define an association, you cannot make your service available to

other service networks, so you need to plan the implementation carefully. 

You cannot share services between different regions because a Service Network is a

regional construct: you'll need to use a hybrid approach, resorting to traditional"

connectivity methods, like Transit Gateway Peering and VPC Peering.

On the other hand, there are great benefits: you can free service owners to configure

and offer by themselves their components while keeping centralized control in a

complex environment.

We didn't have a look at IAM policies, but implementing IAM Authentication and

Authorization is the key to a secure microservice implementation. 

VPC Lattice also offers a complete service mesh solution because it can link EC2, EKS,

ECS, and Lambda workloads. 

Cost is another important factor: as your service mesh grows, costs increase

proportionally.

You pay 0.025$/hour for each service. If you have 10 services you pay 182.5$/month. A

different approach can have a smaller impact on AWS billing for complex architectures

with hundreds of microservices. 

That's all for today!

Microservices aren't simple: they can increase the overall complexity of the

architecture and require good planning and management over time. 

Have you already had the chance to experiment with VPC Lattice? What are your

thoughts about this new approach?

Let us know in the comments!

About Proud2beCloud

Yes!

I was expecting something
different

Made with Hotjar

Was this article useful for you?

https://www.hotjar.com/feedback-surveys?utm_source=client&utm_medium=poll&utm_campaign=insights


Damiano Giorgi

Ex on-prem systems engineer, lazy and prone to automating boring tasks. In constant search

of technological innovations and new exciting things to experience. And that's why I love

Cloud Computing! At this moment, the only "hardware" I regularly dedicate myself to is that

my bass; if you can't find me in the office or in the band room try at the pub or at some

airport, then!

Copyright © 2011-2024 by beSharp spa - P.IVA IT02415160189

Proud2beCloud is a blog by beSharp, an Italian APN Premier Consulting Partner expert

in designing, implementing, and managing complex Cloud infrastructures and

advanced services on AWS. Before being writers, we are Cloud Experts working daily

with AWS services since 2007. We are hungry readers, innovative builders, and gem-

seekers. On Proud2beCloud, we regularly share our best AWS pro tips, configuration

insights, in-depth news, tips&tricks, how-tos, and many other resources. Take part in

the discussion!

Yes!

I was expecting something
different

Made with Hotjar

Was this article useful for you?

https://blog.besharp.it/author/damiano-giorgi/
https://blog.besharp.it/author/damiano-giorgi/
https://www.besharp.it/en/
https://www.hotjar.com/feedback-surveys?utm_source=client&utm_medium=poll&utm_campaign=insights

