
Home > Architecting

3 ways to decouple your microservices:
SQS queues, ELB load balancing, and
SNS notification system
12 May 2023 - 10 min. read

Amazon Simple Notification Service (SNS) Amazon Simple Queue Service (SQS)

Application Modernization AWS Elastic Load Balancer (ELB) Microservices

Why is service decoupling so important? And why should we avoid the tight

coupling?

Monolithic architecture has served us well and had its time to shine but, in the early days of

the web, companies needed a system to empower users to manage and deliver content. A

monolithic architecture provided a solution that is an all-in-one, or “coupled,” system with a

codebase that pulled in everything necessary for managing and publishing content to the

web. With this type of architecture, all processes are tightly coupled and run as a single

service.

Adding or improving a monolithic application’s features becomes more complex as the

code base grows. Monolithic architectures add risk for application availability because

many dependent and tightly coupled processes increase the impact of a single process

failure. So, here is the problem, if the big monolithic brain fails, everything fails.

To overcome this problem we can make use of microservices, which are an architectural

and organizational approach to software development where software is composed of

small independent services that communicate over well-defined APIs and performed single

function.

Because they are independently run, each service can be updated, deployed, and scaled to

meet the demand for specific functions of an application, everything without affecting the

functioning of other services. On a single service, more developers contribute to producing

https://blog.besharp.it/
https://blog.besharp.it/category/architecting-en/
https://blog.besharp.it/tag/amazon-simple-notification-service-sns/
https://blog.besharp.it/tag/amazon-simple-queue-service-sqs-en/
https://blog.besharp.it/tag/application-modernization/
https://blog.besharp.it/tag/aws-elastic-load-balancer/
https://blog.besharp.it/tag/microservices-en/
https://blog.besharp.it/


the code and, if the service becomes complex over time, it can be broken into smaller

services.

In this article, we will explain a use case inspired by a real-world scenario. We will

demonstrate how to resolve different problems by using three AWS services with the aim

of decoupling our architecture:

SQS (Simple Queue Service)

SNS (Simple Notification Service)

ELB (Elastic Load Balancer)

We will use them in different combinations to overcome different problems.

Before proceeding in explaining the solutions here is a simple summary of how the services

work:

SQS (Simple Queue Service)

We have already talked about how we can use SQS to decouple services in this article.

In short, SQS is a message queuing service that can send, store, and receive messages

between software components. This allows decoupling services reliably and to send and

receive high volumes of data without needing other services to be always available.

SNS (Simple Notification Service)

https://www.proud2becloud.com/decoupling-services-using-sqs-as-lambda-trigger/


SNS is a managed service that provides message delivery from publisher to subscriber. The

publisher will send the message to a “topic”. Client can then subscribe to the SNS Topic e

they will get notified every time a message is pushed to the topic.

The message could be received in different ways depending on the type of endpoint used.

It could be received by other AWS services such as Lambda Functions, SQS, Kinesis, HTTP,

or even as an email, mobile push notifications, and mobile text message (SMS).

ELB (Elastic Load Balancer)



ELB allows to automatically distribute incoming traffic to multiple type of targets. One of

the most common ways of using it is to auto-scale the number of the EC2 processing the

incoming traffic to achieve a higher availability and fault tolerance.

There are three types of Elastic Load Balancers (ELBs) in AWS:

1. Application Load Balancer (ALB): it’s an ELB designed for HTTP/HTTPS traffic at the

application layer of the OSI model. It routes requests based on request content and is

best suited for microservices and container-based architectures.

2. Network Load Balancer (NLB): NLBs are designed for TCP/UDP traffic and operate at

the transport layer of the OSI model. They are capable of handling millions of requests

per second with low latency.

3. Classic Load Balancer (CLB): it’s the original AWS load balancer that operates at both

the application and transport layer of the OSI model. It can handle HTTP/HTTPS, TCP,

and SSL traffic, making it ideal for simple architectures in need of basic load-balancing

solutions. This is currently deprecated, so you must use one of the other two types.

Differences between asynchronous and synchronous decoupling

Decoupling can be done synchronously or asynchronously.

Synchronous decoupling requires all processes to be tightly decoupled and run as a single

service. When a request is received, all processes will respond synchronously.

Asynchronous decoupling, on the other hand, separates the processes and allows them to

operate independently of each other.

If certain operations can be done asynchronously and do not need to be completed in a

single transaction, one part of the architecture can collect the requests, while another part

can process them later or when resources become available.

Now we are going to illustrate a real-case scenario in which we will decouple our

architecture to improve performance, reliability, and user experience. We will use the

microservices previously mentioned.



The problem
Imagine that we own a small social networking website that is becoming popular among

young people. This website allows users to upload images, which must be resized to

different dimensions to ensure optimal use on all types of devices. However, we want to do

more than just resize the images. We want to apply a machine learning model to the

images to extract some features that can be used to tag them with labels linked to the

image content. This will allow users to search for images based on content, rather than just

file names.

The number of images uploaded in a month may vary greatly, so we need a solution that is

both cost-efficient and reliable during peak upload times. Our current solution is computed

by a single EC2 instance, which handles both the social network backend logic, the image

resizing process, and the execution of the machine learning model. While this worked well

when the website had a smaller user base, it is no longer sufficient.

As the number of users grew, the load on the EC2 instance increased. It became clear that

exposing a single EC2 instance to all the traffic is becoming unbearable. API calls and

image elaborations became slower and slower, which frustrated users. To address these

issues, we need to scale our infrastructure appropriately. We could consider using a load

balancer to distribute traffic across multiple EC2 instances. This would help ensure that

there is no bottleneck in the system and that users can upload and access images quickly

and easily.

We could also consider using Amazon S3 to store the images. This would allow us to take

advantage of Amazon's cost-efficient storage, and help ensure that the website remains

responsive even during peak uploading times.



By taking these steps, we can ensure that our website remains fast and responsive, even as

our user base continues to grow.

First solution ELB

To manage an increasing number of users, we need to scale our architecture for better

performance. Our solution is to use an Elastic Load Balancer with an Autoscaling Group to

increase the number of EC2 instances computing the images.

The Elastic Load Balancer receives all incoming traffic and redirects it to multiple EC2

instances. We can receive all the traffic with the ELB instead of the EC2. Also, we can

attach to it the Autoscaling Group, which will spawn more instances as the traffic increases

and redirect it. This is a synchronous solution because the resizing of the image and the

application of the machine learning algorithm occur when the request is received.

We have taken the first step in decoupling our solution. However, all EC2 instances that are

spawned respond synchronously when called, resulting in a negative impact on our users'

experience. Waiting for image elaboration can be a lengthy task, and we want our

customers to be happy.

Fortunately, resizing the image or tagging information the moment an image is uploaded is

not necessary, so we can avoid this issue. By introducing asynchronous decoupling with

queues, we can further decouple our system. We can achieve this with the second of our

services, SQS.

Second solution SQS



To start off, we should separate our website and backend logic from our machine learning

algorithm logic and image resizing logic in order to improve efficiency and streamline our

processes. This will allow us to better manage the different tasks and ensure that each

component operates optimally.

As a result of this separation, we will have two types of EC2 instances performing distinct

tasks. The first one will be responsible for responding directly to user requests, while the

second one will handle all heavy computational tasks. By dividing the workload in this

manner, we can ensure that each EC2 instance is optimized for its specific task.

The first EC2 instance will be placed behind an ELB with AutoScaling. When new EC2

instances are spawned, they will collect the images and save them in S3 for the image and

in RDS for the linked metadata (such as ID, upload date and time, size, etc.), while

simultaneously writing the task to perform in a queue.

The second EC2 instance will check whether there are any messages in the queue to be

processed to generate images of different sizes. These images will be stored in an S3

instance, which could be the same as before but under different paths.

The second EC2 instance will still perform the tagging algorithm, analyzing the image and

recording the associated tags in the RDS as attributes of the original image data, along

with other image metadata.

Bonus tips

Since we have decoupled our system and no longer require the second type of EC2

instance to be always available, we can use Spot Instances to save up to 90% on full costs.

The image will be uploaded immediately from the EC2 instance that manages the backend

logic. Image processing, both resizing and tagging, can be done asynchronously thanks to

our decoupled architecture.

Third solution SNS + SQS



We have successfully decoupled the backend logic from the image processing, which can

now be performed asynchronously. This means that our architecture can now handle

multiple image processing requests at the same time, without delaying the execution of the

backend logic. However, what if the process of resizing is much faster than the execution of

the machine learning model? To further optimize the process, and achieve a highly

decoupled microservices architecture, we need to split the processing logic into two new

independent parts.

The first part is responsible for the resizing process, while the second executes the ML

algorithm. This ensures that the two processes can be executed independently and

asynchronously, without affecting each other's performance.

To inform both parts, when a new image is uploaded, and start both processing at the same

time, we can use Amazon SNS. The EC2 instance that manages the backend logic writes to

an SNS topic, both processing parts are subscribers of the topic and will receive the

notification that makes the execution of the processing logic start.

Moreover, we can improve the efficiency of the system by introducing an SQS in front of

both the processing EC2 unit. This allows us to decouple each part of the new architecture

further in order to manage image uploading peaks in the right way.

In summary, by splitting the processing logic into two independent parts, and introducing

load balancing, we can achieve a highly decoupled microservices architecture that can

handle multiple image processing requests efficiently and quickly.

Final tip

In all of our examples, we have used EC2 instances as our computational element. However,

we can go fully serverless by rewriting the backend logic, resizing logic, and tagging logic

to be implemented in different Lambda Functions.

A Lambda function can also be placed behind an ELB, such as an Application Load

Balancer. Also will automatically handle scaling the number of execution environments until

you reach your account's concurrency limit (you don’t need an AutoScaling group).

However, explaining how Lambda Functions work and when to use them as a substitute for

an EC2 instance is beyond the scope of this article.

Conclusion

In this article, we have been exploring three common patterns for decoupling microservices

of your cloud architecture. By utilizing three simple AWS services, it is possible to increase



Giacomo Zagami

MLOps/DevOps @ beSharp. At work, I’m a tall and skinny biomedical engineer with a passion for

math, data, and machine learning, but actually, I’m a guitar player, I love music and play with

other people.

Antonio Minolfi

Cloud Native Developer @ beSharp. Naturally curious, I enjoy learning and discovering something

new every day. I like developing tools that simplify complex tasks and using the latest

technologies to do so. In my free time, I relax by going to the gym or playing video games

("Gains and Games!")

the scalability and performance of cloud-based solutions, while also eliminating many

common issues. The most significant issue is the maintenance of a monolithic architecture.

Decoupling microservices allows for easy updates and fixes to specific parts of the

architecture without affecting the others. Also, with this flexible architecture, you can

better manage performance concerns.

Have you tried out those microservices or decoupling your architecture? We'd love to hear

about your experience. Feel free to share in the comments below!

See you soon for the next article on #Proud2beCloud

About Proud2beCloud

Proud2beCloud is a blog by beSharp, an Italian APN Premier Consulting Partner expert in

designing, implementing, and managing complex Cloud infrastructures and advanced

services on AWS. Before being writers, we are Cloud Experts working daily with AWS

services since 2007. We are hungry readers, innovative builders, and gem-seekers. On

Proud2beCloud, we regularly share our best AWS pro tips, configuration insights, in-depth

news, tips&tricks, how-tos, and many other resources. Take part in the discussion!

https://blog.besharp.it/author/giacomo-zagami/
https://blog.besharp.it/author/giacomo-zagami/
https://blog.besharp.it/author/antonio-minolfi/
https://blog.besharp.it/author/antonio-minolfi/
https://www.besharp.it/en/


Copyright © 2011-2023 by beSharp spa - P.IVA IT02415160189


