
Home > Architecting

AWS Elemental MediaConvert:
advanced transcoding for streaming
platforms
3 March 2023 - 9 min. read

AWS Elemental MediaConverter Media Streaming

Introduction

Have you ever wondered what is meant by transcoding?

Have you ever wondered how the big streaming platforms can provide you with such a

complete and feature-rich service?

In this article, we will understand what transcoding is, how it works, and why

transcoding is used. We will first face a classic solution using FFmpeg and then we will

combine it with the AWS Elemental MediaConvert service.

What is transcoding and why is useful

We can define transcoding as the process that allows, given an audio/video source, to

obtain multiple versions with different formats and resolutions. This elaboration can be

done, both in real-time and in post-production.

Today there are many playback devices available and they differ from each other in

resolution, size, and supported video codecs.

The only way we have to reach all devices is to transcode the contents of our platform.

Starting from content recorded in 4K we will create several versions with different

resolutions, codecs, bitrates, etc.

https://www.proud2becloud.com/
https://www.proud2becloud.com/category/architecting-en/
https://www.proud2becloud.com/tag/aws-elemental-mediaconverter/
https://www.proud2becloud.com/tag/media-streaming/
https://www.proud2becloud.com/

Nowadays the ability to set the video resolution is considered an almost mandatory

feature, especially if you intend to compete with the most popular streaming websites.

This brings incredible benefits both for the users and for those who have to manage

the platform.

If while playing a video the user decides to lower the resolution, this would reduce the

consumption of his data network.

Another crucial activity, carried out during transcoding, is fragmentation.

This operation allows us to divide a single large video into sub-parts of the same

duration. To organize the recomposition of the video, a specific file is used to

orchestrate all the single fragments that will be transmitted by the media player.

This operation allows the buffering of the video, thus preventing the user from

downloading the entire content to the device before "live/streaming" viewing. The

most modern live streaming platforms use real-time fragmentation to allow users to

have a fluid use of the broadcasted content.

Galactic guide for transcodificators

Let's consider the main video codecs according to the most popular formats and

devices. Below is showed a table of the main video codecs used and their respective

supported resolutions:

Codec Description Resolution

H.264/AVC

One of the most popular codecs, used for

encoding high-definition video. It offers

great video quality with low bandwidth.

HD - 720p con 1280x720px

FullHD - 1080p 1920x1080px

H.265/HEVC
Successor of H.264, it offers even better

video quality with lower bandwidth.
To 8k - 7680x4320px

VP9

Developed by Google, it is a free and open

codec that offers video quality similar to

H.265 (up to 4k) at a lower cost.

To 4k - 3840x2160px

AV1

Sviluppato da un consorzio di aziende

tecnologiche, offre una qualità video

simile a quella di H.265/HEVC a un costo

inferiore

To 8k - 7680x4320px

MPEG-2

Developed by a consortium of technology

companies, it offers video quality similar

to H.265/HEVC at a lower cost

SD - 720x576px o 720x480px

HD - 720p con 1280x720px

FullHD - 1080p 1920x1080px

MPEG-4

Used for encoding video on the Internet

and mobile devices, it offers good video

quality with low bandwidth.

SD - 720x576px o 720x480px

HD - 720p con 1280x720px

FullHD - 1080p 1920x1080px

Theora
An open source video codec, it offers

good video quality with low bandwidth.

SD - 720x576px o 720x480px

HD - 720p con 1280x720px

Table of the main video codecs used and their respective supported resolutions

To convert our content into these formats we can use two approaches:

The "classic" approach

The term transcoding is associated by most users with the FFmpeg framework.

Quoting from the official site:

FFmpeg is the leading multimedia framework, able to decode, encode, transcode,

mux, demux, stream, filter, and play pretty much anything that humans and machines

have created. It supports the most obscure ancient formats up to the cutting edge. No

matter if they were designed by some standards committee, the community, or a

corporation. It is also highly portable: FFmpeg compiles, runs, and passes our testing

infrastructure FATE across Linux, Mac OS X, Microsoft Windows, the BSDs, Solaris, etc.

under a wide variety of build environments, machine architectures, and

configurations.

Once installed on our machine we can use it to carry out transcoding operations

locally.

As an example, if we wanted to decrease (or increase) the video file’s bitrate to 24 we

would use the following command:

ffmpeg -I input.avi -r 24 output.avi

If we find ourselves with the need to transcode many sources into multiple formats, we

could adopt a scalable solution using EC2, SQS, and autoscaling groups.

To process our videos we will use a battery of EC2 arranged within an autoscaling

group; by doing so, our infrastructure will be capable of managing increases in traffic

http://fate.ffmpeg.org/

(and as a consequence of the necessary processing) by autonomously creating new

EC2s and managing the possible failure of one of the AWS AZs.

As a scaling metric, it will be enough for us to implement an SQS queue which will act

as a buffer for the jobs to be performed, preventing us from excessive scaling when

the requests are manageable with the current number of machines, and making the

most of the computational resources that EC2 will make available. The SQS queue also

provides other advantages such as the management of dead-letter queues, i.e. the

possibility of recognizing jobs that have not been completed by our EC2 for any

reason and then possibly retrying them.

To use this union of the two services, however, it will be necessary to create a custom

metric on AWS since the number of elements in the queue is not natively recognized

by the autoscaling groups.

SQS queue for parallelized transcoding on an EC2 fleet

Using the right types of EC2 we will certainly have the great computing power to

complete our work, but we would run into several disadvantages:

Non-parallelizable FFmpeg processing: two or more EC2 instances cannot share the

same processing (coming from a single source) preventing the full exploitation of

the computing power of the individual EC2 and therefore the use of CPU metrics for

scaling;

EC2 instance management: patching, disk space management, and instance fail

must be managed personally.

AWS Elemental MediaConvert

When it comes to transcoding on AWS, AWS Elemental MediaConvert is the very first

service we meet.

Using this fully managed service, we will have access to many features that will help

both already experienced technicians and novices who are approaching the subject

during the transcoding process.

Elemental MediaConvert is structured in JOBS TEMPLATE, JOBS, and QUEUES.

JOB TEMPLATE

Job templates create a blueprint that can be reused over and over again to optimally

organize which and how many different formats we would like to derive from our

source file.

During the creation of our templates, we will be provided with many features to "touch

up" our video by adding particular sections, modifying formats, and codecs, adjusting

the resolution and fragmentation if we want one, and many others that will allow us to

obtain the best possible result from the source file.

As mentioned at the beginning of the article, we may need to create different formats

for the same video perhaps by simply changing the resolution to be able to adapt to

different playback devices. To avoid having to configure all these, and similar

parameters, every time, we can create a template for each resolution we intend to

produce content for.

Assuming that our main formats will be HD, FullHD, and 4K, at the end of our

configurations we will have 3 templates ready to be recalled during processing by the

MediaConvert service.

Eventually, we will also be able to decide to create a single template that will have

different outputs divided by format, quality, and codec (HD, FullHD, 4K). t is up to

the user to adopt the best practice according to his needs to efficiently produce his

content.

JOBS

We can decide to create our jobs starting from:

a previously created template. In this case, we will only have to set inputs and

outputs in case they have not already been set in the template. When creating a

new Job we will need to specify where the location of the files saved on S3;

A JSON file that will contain all of our configurations. This practice could be very

advantageous in the case of many template variants and could help a non-Elemental

MediaConvert expert to approach them using a more common language such as

JSON. The possibility of outsourcing our configuration into a file, allows also the

creation of an ad hoc script/program to automatically fill in the fields of our JSON

and then import it and finally have our JOB;

A copy of a JSON resulting from an existing job. Once the job has been created we

can read (and copy) the resulting JSON with all the configurations we have set and

then duplicate our JOB to modify a parameter without having to create it from

scratch.

QUEUE

The queues allow us to schedule the transcoding procedures that we would like to do

on our contents and to parallelize the processes. Like for other AWS services, an on-

demand model is available for paying only for the minutes of processing, along with a

flat payment model that requires a 12-month processing charge.

Summing up: AWS Elemental MediaConvert vs FFmpeg

So, what’s the best approach?

After analyzing the 2 transcoding approaches, we can say that choosing one or the

other strongly depends on your specific needs.

On the one hand, using one or more EC2 would allow us to design a Highly Available

infrastructure also capable of managing load peaks. In this scenario, costs would

certainly be high, especially as the computational power required and the HA level

increase.

On the other hand, a solution based on the fully managed AWS Elemental

MediaConvert services would make us free from any infrastructure management issue

and would allow us to benefit from a well-crafted GUI for all the transcoding setups.

This solution also has its drawbacks: the costs could increase dramatically. It would be

necessary to keep the monthly invoices under control to understand when switching

from the classic on-demand to a reserved queue becomes a suitable choice. Although

costs would be different according to the service chosen, we must say that such a

comparison would be like comparing apples with oranges. The fact that the number of

jobs to be performed may easily vary does not help us to quantify the difference in

costs.

A plus for AWS Elemental MediaConvert is the possibility of natively integrating it with

other AWS services to automate the entire flow. The easiest services to implement

would certainly be S3 and event bridge which can help us to store our content and

automatically start our transcodes when a new source is published, paving the way

with automation and event-driven infrastructures.

Another big difference lies in the complexity that comes from the two approaches.

If on the one hand, AWS MediaConver guides us with default settings and with a fairly

explanatory interface, on the other hand, FFmpeg provides us with many settings

which, for a novice user, could be misleading and complicated.

Have you ever dealt with content streaming? Tell us about your experience in the

comments!

See you soon on #Proud2beCloud for a brand-new article!

About Proud2beCloud

Proud2beCloud is a blog by beSharp, an Italian APN Premier Consulting Partner

expert in designing, implementing, and managing complex Cloud infrastructures and

advanced services on AWS. Before being writers, we are Cloud Experts working daily

with AWS services since 2007. We are hungry readers, innovative builders, and gem-

seekers. On Proud2beCloud, we regularly share our best AWS pro tips, configuration

insights, in-depth news, tips&tricks, how-tos, and many other resources. Take part in

the discussion!

https://www.proud2becloud.com/author/riccardo-fragnelli/
https://www.besharp.it/en/

Riccardo Fragnelli

DevOps @ beSharpI was born on-prem as a Dev before landing on the “Cloud side of IT”.

With AWS I discovered a whole new branch of IT that fascinates me more and more; I’m

always ready for the next big thing!I’m the fussiest man I know on earth and quite lazy. I like

spending my free time jumping between video games and RPGs.

Antonio Callegari

DevOps Engineer @ beSharp.Born as a hardware-addicted, “classic” system engineer, I also

like jumping to the dark side: the Cloud! And you know the effect that this mix can make :)

Hand-making is my first choice, but a bit of high-quality automation is welcome in my

projects.My free time is split between my family and the music, both as a player, and sound

engineer.

Copyright © 2011-2023 by beSharp spa - P.IVA IT02415160189

https://www.proud2becloud.com/author/riccardo-fragnelli/
https://www.proud2becloud.com/author/antonio-callegari/
https://www.proud2becloud.com/author/antonio-callegari/

