
Home > DevOps

PaaS on AWS: how to build it the
perfect way – Part III

11 November 2022 - 7 min. read

Amazon EC2 CI/CD Infrastructure as Code (IaC) Platform-as-a-Service (PaaS)

Virtual Host

Welcome to the last chapter of our 3-article series about building PaaS on AWS.

We started with a deep dive into the fundamentals to approach PaaS on AWS.

Then, in our second article, we analyzed the shared services at the base of the

operation of our vending machine.

Now it's time to focus on the services dedicated to users.

For convenience, we have divided the services into two repositories and, as mentioned

in the first article, we find the stacks inside them:

Infrastructure repository:

Bucket S3 to host the data of the end-user and his software

Pipeline that updates the AMI through the Packer framework and the deployment

of the software Pipeline and related infrastructures services such as dedicated

RDS and ASG

Software pipeline repository:

Application load balancer if the user has his own dedicated domain and the

environment is the production one

https://www.proud2becloud.com/
https://www.proud2becloud.com/category/devops-en/
https://www.proud2becloud.com/tag/amazon-ec2-en/
https://www.proud2becloud.com/tag/ci-cd-en/
https://www.proud2becloud.com/tag/infrastructure-as-code-iac-en/
https://www.proud2becloud.com/tag/platform-as-a-service-paas/
https://www.proud2becloud.com/tag/virtual-host/
https://www.proud2becloud.com/
https://www.proud2becloud.com/paas-on-aws-how-to-build-it-the-perfect-way/
https://www.proud2becloud.com/paas-on-aws-how-to-build-it-the-perfect-way-part-ii/

RDS database in multi-AZ configuration for the production environment

Pipeline for user software deployment

Infrastructure repository

Infrastructural pipeline
The infrastructure pipeline will perform the following steps:

AMI creation with Packer
The paker-customer-environment.pkr.hcl file is generated by the CDK deployment

using data retrieved from the commit. It is validated and executed

source ./configFile.sh

AMI_DESCRIPTION=\"commit id: $COMMIT_ID\\n time stamp: $COMMIT_TIME

\\n commit by: $COMMIT_AUTHOR_NAME\\n message: $COMMIT_MESSAGE\"

sed -i s/PLACE_CODEBUILD_BUILD_ID/$CODEBUILD_BUILD_NUMBER/g packer-CU

STOMER-$ENVIRONMENT.pkr.hcl

packer validate packer-$CUSTOMER-$ENVIRONMENT.pkr.hcl

packer build packer-$CUSTOMER-$ENVIRONMENT.pkr.hcl

export AMI_ID=$(cat manifest-$CUSTOMER-$ENVIRONMENT.json | grep artif

act_id | cut -d ":" -f3 | cut -d '\"' -f1)

export AMI_NAME=ami-$CUSTOMER-$ENVIRONMENT-$CODEBUILD_BUILD_NUMBER

export INSTANCE_NAME=$CUSTOMER-$ENVIRONMENT-$CODEBUILD_BUILD_NUMBER

Manual approval
For the production environment only, we have chosen to add a stage that prevents

unwanted changes from being released by mistake:

myPipeline.addStage({

stageName: 'approve',

placement: {

justAfter: myPipeline.stages[1],

}

}).addAction(new aws_codepipeline_actions.ManualApprovalAction({

actionName: `${process.env.CUSTOMER}-approve`,

notificationTopic: new Topic(this, `${process.env.CUSTOMER}-${proces

s.env.ENVIRONMENT}-software-sh-pipeline`),

notifyEmails: configFile.approvalEmails,

additionalInformation: `${process.env.CUSTOMER} deploy to ${process.e

nv.ENVIRONMENT}`

})

)

}

When the pipeline reaches this step, an email is sent to the previously indicated

addresses (in the example above they are indicated in the approvalEmails

configuration). The person who will be responsible for verifying the required update

will be able to allow the execution of the pipeline to continue or block it to fix any

errors.

Deploy repository software pipeline
The stage configures the git credentials and clones the repository; it then makes a call

to the shared ALB to calculate the priority of the rule to be applied to the listener. If it

is an update to an existing rule, the priority will not be changed.

Software pipeline repository

Application load balancer
In the case of a custom domain and production environment, a nominal Application

Load Balancer will be deployed with two listeners (port 80 HTTP and port 443 HTTPS)

myCustomAppLoadBalancer.addListener(`App-80-Listener`, {

port: 80,

defaultAction: elbv2.ListenerAction.redirect({

permanent: true,

port: '443',

protocol: 'HTTPS',

})

})

const myCustom443ApplicationListener =

 myCustomAppLoadBalancer.addListener(`App-443-Listener`, {

port: 443,

defaultAction: elbv2.ListenerAction.fixedResponse(503, {

contentType: `text/plain`,

messageBody: 'host not found',

})

})

and the user's certificate will be applied

const wildcardListenerCertificate = elbv2.ListenerCertificate.fromArn

(`${configFile.customer.certificate.arn}`)

myCustom443ApplicationListener.addCertificates(`Wildcard-${localUpper

Customer}-Cert`, [wildcardListenerCertificate])

RDS Database

An RDS database is created, the settings are defined within a configuration file.

Among these parameters we find:

Master username

Cluster name

List of security groups to be assigned

DB Engine to use

Backup configurations

Autoscaling Group

Thanks to the AWS Autoscaling service, we can configure thresholds that, once

exceeded, will trigger the creation of a new instance that will be able to manage part

of the traffic.

In order to configure an Autoscaling group, it is necessary to provide a Launch

Template (preferred by AWS) or a Launch Configuration (which is falling into disuse).

For some reason, the AutoScaling construct provided by AWS CDK uses the Launch

Configuration by default, but we expect the use of the Launch Template to be

implemented in future versions of the class!

Target group

The target group is created using the configurations provided by the user (from the

config file) to manage the health checks with which to verify the integrity of the target

resources. This target group will then be associated with the Application Load

Balancer.

Software Pipeline

The final destination ...

This pipeline deploys the customer's software within the group of dedicated EC2

instances and is divided into the following stages.

Build

It carries out tests on the code and, to do so, uses the functionality made available by

CodeBuild through the use of the buildSpec.yaml file and a custom image on which to

do the tests downloaded directly from the ECR service. The buildSpec file is a YAML

file that contains the necessary configurations for the CodeBuild project:

version: 0.2

phases:

 install:

 commands:

 - echo Entered the install phase...

 finally:

 - echo This always runs even if the update or install command f

ails

 pre_build:

 commands:

 - echo Entered the pre_build phase...

 finally:

 - echo This always runs even if the login command fails

 build:

 commands:

 - echo Entered the build phase...

 finally:

 - echo This always runs even if the install command fails

 post_build:

 commands:

 - echo Entered the post_build phase...

 - echo Build completed on `date`

artifacts:

 files:

 - location

 - location

 name: artifact-name

It allows you to give the customer full autonomy on the commands to be executed by

the build job divided into sections.

Manual approval

As with the infrastructure pipeline, we want to protect ourselves from unwanted

updates that could cause downtime in the application. For this reason, every

production release must be confirmed by a human.

Deployment

Using the CodeDeploy service we can automate the updating of our virtual machines

and the deployment of the newly approved code.

new codedeploy.ServerDeploymentGroup(this, `Deployment-Group-${localU

pperCustomer}-${localUpperEnvironment}`, {

deploymentGroupName: `${process.env.CUSTOMER}-${process.env.ENVIRONME

NT}-deploy-group`,

loadBalancer: codedeploy.LoadBalancer.application(props.targetGroup),

autoScalingGroups: [props.asg],

role: softwarePipelineRole,

application: deployApp,

deploymentConfig: codedeploy.ServerDeploymentConfig.ONE_AT_A_TIME,

installAgent: true,

autoRollback: {

failedDeployment: true,

stoppedDeployment: true

}

})

Also for this service the command management functionality from file comes to our

aid. The file to put in the root of the software repository is called appspec.yaml.

version: 0.0

os: linux

files:

 - source: /

 destination: /var/www/html

hooks:

 BeforeInstall: # You can use this deployment lifecycle event for pr

einstall tasks, such as decrypting files and creating a backup of the

current version

 - location: deployScript/beforeInstall.sh

 timeout: 300

 runas: root

INSTALL – During this deployment lifecycle event, the CodeDeploy ag

ent copies the revision files from the temporary location to the fina

l destination folder. This event is reserved for the CodeDeploy agent

and cannot be used to run scripts.

 AfterInstall: # You can use this deployment lifecycle event for tas

ks such as configuring your application or changing file permissions

 - location: deployScript/afterInstall.sh

 timeout: 300

 runas: root

 ApplicationStart: # You typically use this deployment lifecycle eve

nt to restart services that were stopped during ApplicationStop

 - location: deployScript/applicationStart.sh

 timeout: 300

 runas: root

 ValidateService: # This is the last deployment lifecycle event. It

 is used to verify the deployment was completed successfully.

 - location: deployScript/validateService.sh

 timeout: 300

 runas: root

To conclude

When we see the iconic Succeeded label with the green flag next to the software

pipeline, the entire process will be completed, and will be in possession of the

machinery with our software installed and ready to be used.

When a customer asks us for a fleet of machines, we can easily create the dedicated

configuration file and launch the deployment of the infrastructure stacks (the first

repository analyzed in this article), and the "magic" of the IAC will do the rest allowing

you to concentrate the efforts of the end user only on the development and

maintenance of their own software.

We hope you enjoyed the journey! Much more could be said about this topic, but this

is a good way to get your hands dirty.

What's your experience with this topic? Did you build some kind of PaaS Virtual Host

Vending Machine? Let us know in the comments!

See you in 14 days for a new article on Proud2beCloud

About Proud2beCloud

Proud2beCloud is a blog by beSharp, an Italian APN Premier Consulting Partner expert

in designing, implementing, and managing complex Cloud infrastructures and

advanced services on AWS. Before being writers, we are Cloud Experts working daily

with AWS services since 2007. We are hungry readers, innovative builders, and gem-

seekers. On Proud2beCloud, we regularly share our best AWS pro tips, configuration

insights, in-depth news, tips&tricks, how-tos, and many other resources. Take part in

the discussion!

https://www.besharp.it/en/

Antonio Callegari

DevOps Engineer @ beSharp.Born as a hardware-addicted, “classic” system engineer, I also

like jumping to the dark side: the Cloud! And you know the effect that this mix can make :)

Hand-making is my first choice, but a bit of high-quality automation is welcome in my

projects.My free time is split between my family and the music, both as a player, and sound

engineer.

Mattia Costamagna

DevOps engineer and cloud-native developer @ beSharp. I love spending my free time

reading novels and listening to 70s rock and blues music. Always in search of new

technologies and frameworks to test and use. Craft beer is my fuel!

Copyright © 2011-2022 by beSharp spa - P.IVA IT02415160189

https://www.proud2becloud.com/author/antonio-callegari/
https://www.proud2becloud.com/author/antonio-callegari/
https://www.proud2becloud.com/author/mattia-costamagna/
https://www.proud2becloud.com/author/mattia-costamagna/

