el’ﬂﬂﬂlmf
cLouD!
Home > Cloud-native Development

Building a Deno Serverless
Application using Lambda Custom
Runtime & CDK

2 September 2022 - 8 min. read

AWS CDK AWS Lambda Cl/cD Continuous Delivery Deno

Lambda Custom Runtime Serverless

Introduction

Welcome back to Proud2beCloud, the blog by beSharp! Today we’ll be exploring some
capabilities offered by the Cloud with a focus on customization while always relying
on Infrastructure-as-Code (laaC), Serverless, and managed services. We’ll talk about

Lambda, CDK, pipelines, Serverless Repository, and more.

AWS Lambda Functions (FaaS) are great and versatile tools of the AWS Cloud that

can be useful in many different situations and applications.

But how can we leverage them if we want to leverage a programming language that is

not already supported? The answer is easy: Custom Runtime.

We’ve already seen in one of our previous articles how to create an application C++ on
AWS Lambda. Now, two years later, we want to present a new version of the article

choosing another vastly talked about a programming language: Deno.

We’ll also focus on how to automate the delivery of our application on Lambda
thanks to pipelines CI/CD and CDK.

Custom runtime on Lambda

https://www.proud2becloud.com/
https://www.proud2becloud.com/category/cloud-native-development-en/
https://www.proud2becloud.com/tag/aws-cdk/
https://www.proud2becloud.com/tag/aws-lambda-en/
https://www.proud2becloud.com/tag/ci-cd-en/
https://www.proud2becloud.com/tag/continuous-delivery-en/
https://www.proud2becloud.com/tag/deno/
https://www.proud2becloud.com/tag/lambda-custom-runtime-en/
https://www.proud2becloud.com/tag/serverless-en/
https://www.proud2becloud.com/
https://www.besharp.it/en/
https://www.proud2becloud.com/how-to-run-any-programming-language-on-aws-lambda-custom-runtimes/

As previously stated, if you are an assiduous reader of our blog, you probably already

know about the possibility to use custom runtime on Lambda.

To quickly summarize: Lambda with a custom runtime differs from a ‘standard’ lambda
function because it must contain, other than the source code of the application, all the
libraries needed for the execution and to resolve dependencies. Furthermore, if the

language is interpreted, the interpreter is also needed in the package.

Using a custom runtime for AWS Lambda guarantees the elasticity of the proposed
solutions for the resolution and optimization of the problem that might require a

specific programming language.

The previous article described in detail how to create a custom runtime from scratch
defining all the bootstrap scripts needed. In Today’s article, we’ll simplify the process
further through the use of ready-to-use and reusable elements when possible.

In fact, for the most part of programming languages, it is likely that a custom runtime
already exists and is ready to use or at least a good starting point for a custom
solution. They are usually shared via Git or other sharing platforms. In our case, we’ll

use an existing runtime of Deno.

What’s Deno

Deno is a runtime for Javascript, Typescript, and WebAssembly based on JS Engine
and Rust that has the role of both runtime and package manager. With Deno it is not

necessary to have a separate package manager.

Deno aims to be a secure and reliable scripting environment, intuitive for the

developer. It is open-source under an MIT license.

Like Node.js, Deno focuses on an event-driven architecture and can be used to create

web servers, execute scientific computation, and other solutions.

Deno differs from Node.js in various aspects:

e |t supports only URLSs to load local and remote dependencies while Node.js supports
both the usage of modules and URLSs.

* A package manager for resource fetching is not needed; a registry link npm for
Node.js is not necessary.

https://www.proud2becloud.com/how-to-run-any-programming-language-on-aws-lambda-custom-runtimes/
https://deno.land/

e |t supports a single API to use promise, ES6, and Typescript functionality while
Node.js supports both promises and callback Apis.

e |t minimizes the size of the core APIs while still giving access to a large standard
library with lots of functionalities without any external dependencies.

It should be noted that this is not intended to be a Node.js-Deno comparative article.
Node.js as a runtime continues to be an excellent choice ensuring a minimum
application code time-to-market and a very fast development experience when

compared to that of other programming languages.

Although still at the beginning of its journey, Deno offers some very interesting

opportunities that we will investigate along these lines.

Let's start with sandboxing, one of its most important features. Deno is secure by
default. There are no already given networks, files, or accesses: all types of access
require explicit enabling.

In the image below, you can see the various types of sandboxing supported by Deno.

Deno Other services

erver Socket—mmx

system

I Internal or external

Child process

image source:

https.//medium.com/deno-the-complete-reference/sandboxing-in-deno-b3d514d88b63

AWS Cloud Development Kit (CDK)

The scope of the article is to explain and demonstrate how to create a simple project

with lambda with custom runtime, all while keeping a laaC approach. On AWS for

Infrastructure as a Code, we use AWS CDK.

AWS Cloud Development Kit (CDK) is a framework for software development that
allows the usage of languages like Typescript and Python, with the advantages that
come with them, to describe and define the resources needed for the cloud
infrastructure. CDK translates the file written in the language of choice in

Cloudformation autonomously at deployment time.

The language chosen for this PoC is DENO.

For the image of the Deno runtime, we’re gonna use the AWS Serverless Application

Repository.

AWS Serverless Application Repository, as the name might suggest, is a managed
repository for Serverless applications that allows teams and developers to share
reusable applications other than enabling them to assemble and deploy pieces of

infrastructure already written in a simple and effective manner.

It is possible, in fact, to use pre-existent applications directly from the Serverless
Application Repository in your own architecture, avoiding duplicating work and saving

time.

Every application is packaged with an AWS Serverless Application Model (AWS SAM)
template, which defines the resources used. The publicly shared applications include a

link to the source code of the application.

For the solution described in this article, we’re leveraging the AWS Serverless
Application Repository for a direct pull of the necessary scripts to set up the Deno

custom Runtime. In this way, there’s no need to redefine all the bootstrap scripts:

const denoRuntime = new CfnApplication(this, "DenoRuntime", {
location: {
applicationId:
"arn:aws:serverlessrepo:us-east-1:390065572566:applications/de
no",
semanticVersion: "1.24.3",

Y
}):

https://docs.aws.amazon.com/cdk/index.html
https://docs.aws.amazon.com/serverlessrepo/latest/devguide/what-is-serverlessrepo.html

Hands on
Let’'s get into it!

After having created our repository or cloned/pulled it from our Github repository, we

can start the project.

We’re gonna use a common scaffolding for Serverless applications: both applicative
code and the one needed for the infrastructure are in the same codebase. This
scaffolding enables us to correlate directly the AWS Lambda functions code (defined
in CDK) with the applicative code that will be executed. This avoids the need for any

external link.

besharp-blog-custom-runtime-cdk

app
hello.ts
infrastructure
bin
infrastructure.ts
environments
environment.dev.ts
environment.ts
1ib
infrastructure-stack.ts
pipeline.stack.ts

scripts
test
, .gitignore
.npmignore
7 cdk. json
jest.config.js
% package.json

README . md
w tsconfig.json

% -gitignore

@ package.json

@ tsconfig.json

Starting from root directory we’ll find two main folders.

1. App: applicative code, a file in Deno written in typescript .ts

2. Infrastructure:

https://github.com/besharpsrl/blog-serverless-custom-runtime-deno

e Stack dedicated to the pipeline

e Stack dedicated to the resources (APl Gateway and Lamlbda) necessary for this

demo

Pipeline CI/CD stack

Keeping a laaC approach with a single repository, we obtain a great advantage over
the previous solution described in the first article: we can deploy directly every update

and enhancement without using the AWS console.

Thanks to this approach, the risk of misalignment between the code and the
underlying infrastructure is avoided. Also, thanks to Git, both the infrastructure and

applicative code are monitorable, versioned, and historicized.

Through the
cdk deploy

command we’ll deploy on our AWS account the CDK Pipeline.

This pipeline, translating our CDK Typescript into Cloudformation, will be the one

actually deploying our infrastructure as well as the source code.

With the automatic Pipeline connected to AWS Codecommit (or Github in this case),
the release of a new update is triggered from a push on a repository’s branch. The
deployment will update/create new resources as described in CDK and, subsequently,

the applicative code. (eg.: lambda = resource, lambda handler = applicative).

Infrastructure Stack

In the infrastructure-stack.ts we’ll be defining the configuration of our resources, in our

case Lambda function and API Gateway.

We’re defining the name of the function, memory allocated, Lambda layer, and the

already cited custom runtime.

The API Gateway is very simple in this project and is used to expose the Lambda code

through an endpoint.

InfrastructureStack cdk.Stack {
(scope: Construct, id: props?: cdk.StackProps) {
(scope, id, props)

denoRuntime = CTnApplication(

: 4

layer = lambda.lLayerVersion.fromLayerVersionArn(
denoRuntime.getAtt().toString()

lambdaFunction = lambda. Function(

: lambda.Code.fromAsset()

: [Layer]
: lambda.Runtime.PROVIDED_AL2

: Duration.seconds(38)

LambdaRestApi(
: lambdaFunction

This CDK Typescript code snippet will enable the provisioning of a Lambda function
with a Deno custom runtime, pulled directly from the AWS Serverless Application

Repository and a simple APl Gateway.

The handler defined in the configuration is the hello.handler and refers to the hello.ts

file:

code: lambda.Code.fromAsset("../app"),
handler: "hello.handler",

The applicative code is in the hello.ts file. For the purpose of this demo the function
does nothing more than returning a message without discriminating the HTTP Method

used during invocation.

{
APIGatewayProxyEventV2
APIGatewayProxyResultV2
Context

(
_event: APIGatewayProxyEventV2
_context: Context

): Promise<APIGatewayProxyResultV2> {
.log(.stringify(_event))

Iy
${Deno.

Conclusions

The usage of CDK is widespread and common when using a laaC approach on AWS. In

this article, we depicted how to use Custom Runtime in CDK without the need of

writing firsthand all the bootstrapping scripts necessary.

Thanks to the help of the AWS Serverless Application Repository and a ready Deno

runtime we succeeded in setting up a Serverless project based on APl Gateway and

Lambda with Deno custom runtime.

[t was not necessary to rewrite the bootstrapping scripts. By keeping a single

repository for code and infrastructure, it was possible to connect the provisioning of

the resources directly to the applicative source code.

This solution entails many advantages:

the laaC approach was kept thanks to the usage of AWS CDK.

the ability to use AWS Serverless Application Repository for different runtimes
already publicly shared or the possibility to define some new ones and share them

privately within your organizations or team.

the Custom Runtime advantages, depending on what runtime is used and for what
use case.

In this Deno-based scenario, the dependencies are not installed in the node_modules.

By being imported directly from a CDN the deployment package is faster even starting

the execution may take some time.

In conclusion, the usage of Custom Runtime depends on the use case. However, having
the ability to use custom runtime in pair with CDK without losing the perks of a laaC

approach is surely a great opportunity allowing many other possibilities.

Have you ever used AWS Lambda Custom Rutime for your projects? Tell us your

experience in the comment section below.

See you un 14 days with a new article on Proud2beCloud!

About Proud2beCloud

Proud2beCloud is a blog by beSharp, an Italian APN Premier Consulting Partner expert
in designing, implementing, and managing complex Cloud infrastructures and
advanced services on AWS. Before being writers, we are Cloud Experts working daily
with AWS services since 2007. We are hungry readers, innovative builders, and gem-
seekers. On Proud2beCloud, we regularly share our best AWS pro tips, configuration
insights, in-depth news, tips&tricks, how-tos, and many other resources. Take part in

the discussion!

Alessandro Bertini

DevOps Engineer @ beSharp. | deal with Cloud-Native software development, strongly
oriented to the serverless paradigm!Passionate about board games and video games (as the
best geeks do!)

Alberto Casadei

DevOps Engineer @ beSharp. | approach problems with a ‘lazy’ mindset only to find the
best and more efficient solution!Cards collector and athlete, "a 'bit’ of everything” is the way
to go!

https://www.proud2becloud.com/author/alessandro-bertini/
https://www.proud2becloud.com/author/alessandro-bertini/
https://www.proud2becloud.com/author/alberto-casadei/
https://www.proud2becloud.com/author/alberto-casadei/
https://www.besharp.it/en/

Copyright © 2011-2022 by beSharp spa - P.IVA 1T02415160189

