
Home > Networking & Content Delivery

Gateway Load Balancers: build your
custom network appliance on AWS
30 September 2022 - 9 min. read

Advanced Networking Gateway Load Balancer

"If you gaze into the abyss, the abyss gazes also into you" (F. Nietzsche).

In our previous article about ELB tricks and tips, with a particular focus on Application

Load Balancers and Network Load Balancers. Today, we are focusing specifically on

Gateway Load Balancers to see how they can help to observe and filter outbound

network traffic using appliances.

In this scenario, we assume that we already have designed and implemented a

centralized networking solution using a Transit Gateway, as described here.

If you want to add your customized IDS or network filtering solution, you can

configure routing tables to forward traffic to an ENI interface of an EC2 instance, but

this solution is not highly available and scalable.

Gateway Load Balancers satisfy this need, offering a way to route Layer 3 traffic

transparently to inline highly available EC2 instances, regardless of the protocol/port

used. If you use other load balancers, you are bound to listeners on a specified

protocol/port; for example, you can't forward ICMP traffic.

There are already a lot of pre-configured vendors that already have compatible

appliances, like Cisco, F5, and Fortinet. Here you can find the complete list.

In this article, we'll see how to create a simple custom transparent IDS/router

appliance that you can adapt to your needs. We will use Linux, iptables, and Suricata;

https://www.proud2becloud.com/
https://www.proud2becloud.com/category/networking-content-delivery-en/
https://www.proud2becloud.com/tag/advanced-networking/
https://www.proud2becloud.com/tag/gateway-load-balancers/
https://www.proud2becloud.com/
https://www.proud2becloud.com/aws-elastic-load-balancing-tips-and-tricks-from-basic-to-pro/
https://www.proud2becloud.com/hybrid-cloud-networking-centralized-nat-gateway-through-aws-transit-gateway/
https://aws.amazon.com/elasticloadbalancing/partners/
https://suricata.io/

building your custom appliance will also help you to understand what's behind the

scenes of pre-built solutions.

How Gateway Load Balancers work

Before diving into the building phase, we will briefly describe how this solution works.

As we said, Gateway Load Balancers (GWLB) route all types of IP traffic (TCP, UDP,

ICMP, GRE); the technology that makes this possible is the GENEVE protocol.

GENEVE is a new encapsulation protocol defined in RFC 8926, a standard for different

systems and vendors. Its acronym stands for Generic Network Virtualization

Encapsulation. It encapsulates all traffic sending it in a virtual tunnel so that the

underlying network is unaware of what's inside.

This technology is used, for example, to extend and transport VLANS (or even

VXLANs) across the Internet between different networks.

Our Sample Architecture

We want our setup to be fault tolerant and scalable. Like Application and Network

Load Balancers, our Gateway Load Balancer can span multiple Availability Zones. We'll

also deploy our appliances using an Autoscaling Group so that we can add elasticity to

our solution.

As shown in the figure below, we use NAT Gateways to simplify public IP management:

some third-party external services can require a fixed set of source addresses. A Nat

Gateway will ensure that, if the autoscaling adds an appliance in an availability zone, it

still will use the same Elastic IP to access the Internet.

Let's move on and start with some command-line and AWS Console sessions!

https://datatracker.ietf.org/doc/rfc8926/

Before deploying our load balancer, we will need to create an AMI using Ubuntu 22.04;

you can customize it later for your needs.

Install the tunnel handler and software

An EC2 instance can be used as a target for a GWLB if it can establish a GENEVE

tunnel with it. Once the GENEVE tunnel is established, traffic can flow to it, and our

Gateway Load Balancer will start distributing traffic.

For this reason, the first thing we need to do is to support a GENEVE tunnel on our

custom appliance. Lucky for us, AWS already gives us a tool to ease our task (You can

also use the

ip

Linux standard networking command to handle tunnel creation).

We will skip describing the instance creation and start with the tunnel handler

compilation and installation. In this phase, we'll install Suricata, an open-source

network Intrusion Detection System, using the default configuration and updating its

rules.

apt update

apt install -y build-essential "Development Tools"

apt install -y cmake g++ suricata

snap install aws-cli --classic

suricata-update #update rules for suricata

cd /opt

git clone https://github.com/aws-samples/aws-gateway-load-balancer-tu

nnel-handler

cd aws-gateway-load-balancer-tunnel-handler

cmake .

make

Our tunnel handler is ready. You will find an executable "gwlbtun" in the current

directory; if you invoke it specifying the "-h" parameter, you should be able to see the

help page.

https://github.com/aws-samples/aws-gateway-load-balancer-tunnel-handler

root@ip-10-101-5-238:/opt/aws-gateway-load-balancer-tunnel-handler#

 ./gwlbtun -h

AWS Gateway Load Balancer Tunnel Handler

Usage: ./gwlbtun [options]

Example: ./gwlbtun

 -h Print this help

 -c FILE Command to execute when a new tunnel has been built. See

 below for arguments passed.

 -r FILE Command to execute when a tunnel times out and is about t

o be destroyed. See below for arguments passed.

 -t TIME Minimum time in seconds between last packet seen and to c

onsider the tunnel timed out. Set to 0 (the default) to never time ou

t tunnels.

 Note the actual time between last packet and the destroy

 call may be longer than this time.

 -p PORT Listen to TCP port PORT and provide a health status repor

t on it.

 -s Only return simple health check status (only the HTTP res

ponse code), instead of detailed statistics.

 -d Enable debugging output.

 -x Enable dumping the hex payload of packets being processed

.

Tunnel command arguments:

The commands will be called with the following arguments:

1: The string 'CREATE' or 'DESTROY', depending on which operation is

 occurring.

2: The interface name of the ingress interface (gwi-<X>).

3: The interface name of the egress interface (gwo-<X>). Packets can

be sent out via in the ingress

 as well, but having two different interfaces makes routing and ipta

bles easier.

4: The GWLBE ENI ID in base 16 (e.g. '2b8ee1d4db0c51c4') associated w

ith this tunnel.

The <X> in the interface name is replaced with the base 60 encoded EN

I ID (to fit inside the 15 character

device name limit).

Gwlbtun's task is to establish the GENEVE connection with our GWLB; it also gives

you the ability to specify a health check port that the target group will use, so you

don't have to use custom logic to implement one.

Additionally, it can run a script once the session is created or destroyed. We'll take

advantage of this and write a simple bash script that enables NAT (using iptables) and

IP forwarding. Stopping the service will remove them.

Note: our instance will also need to disable a security feature called

"source/destination check". This security feature blocks all traffic not originated or

directed from or to the current instance as source or destination. As you'll see, we

need to add a role that enables the instance to set this flag by itself.

Place the following script in the

/opt/aws-gateway-load-balancer-tunnel-handler

directory and name it

tunnel-handler.sh

#!/bin/bash

Note: This requires this instance to have Source/Dest check disable

d; we need to assign a role to the ec2 instance to enable and disable

it

echo "Running tunnel handler script... "

echo Mode is $1, In Int is $2, Out Int is $3, ENI is $4

iptables -F

iptables -t nat -F

INSTANCE_ID=$(curl 169.254.169.254/latest/meta-data/instance-id

case $1 in

 CREATE)

 echo "Disabling source and destination chec

k."

 aws ec2 modify-instance-attribute --instance-

id=$INSTANCE_ID --source-dest-check

 echo "Setting up NAT and IP FORWARD"

 iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

 iptables -A FORWARD -i $2 -o $2 -j ACCEPT

 echo 1 > /proc/sys/net/ipv4/ip_forward

 echo 0 > /proc/sys/net/ipv4/conf/all/rp_filter

 echo 0 > /proc/sys/net/ipv4/conf/$2/rp_filter

 ;;

 DESTROY)

 echo "Enabling source and destination check."

 aws ec2 modify-instance-attribute --instance-

id=$INSTANCE_ID --no-source-dest-check

 echo "Removing IP FORWARD"

 echo 0 > /proc/sys/net/ipv4/ip_forward

 echo 1 > /proc/sys/net/ipv4/conf/all/rp_filter

 echo 1 > /proc/sys/net/ipv4/conf/$2/rp_filter

 ;;

 *)

 echo "invalid action."

 exit 1

 ;;

esac

We now need to write a systemd unit that starts the handler, place it in

/lib/systemd/system

and give it a name. We will use aws-gwlb.service

[Unit]

Description=AWS GWLB Tunnel Handler

After=network.target

[Service]

ExecStart=/opt/aws-gateway-load-balancer-tunnel-handler/gwlbtun -c /o

pt/aws-gateway-load-balancer-tunnel-handler/tunnel-handler.sh -r /opt

/aws-gateway-load-balancer-tunnel-handler/tunnel-handler.sh -p 80

Restart=always

RestartSec=5s

[Install]

WantedBy=multi-user.target

Alias=aws-gwlb

Issue these commands to reload the configuration and enable the service. As this is

only a template instance we don't need to start it now.

systemctl daemon-reload

systemctl enable aws-gwlb

You can now create an AMI and start with the Gateway Load balancer Creation.

Load Balancer Configuration

First, create a Target Group, click on "Target Groups", and create a new one.

Select "Instances" for the target type, give it a name, and select "GENEVE" as protocol.

We will use port 80 as health check target because we told our tunnel handler to use

that port (the "-p 80" command line switch").

We will not select any instance in the next step since we'll use an Autoscaling Group.

Once the Target Group creation is completed, click on "Load Balancers", add a new

load balancer and Select "Gateway Load Balancer".

The basic configuration is shared with the other load balancer types: you need to

assign a name and select a VPC and its associated subnets.

You'll find the target group we created in the "IP listener routing" section.

Once the Load Balancer creation finishes, define an endpoint service to use it. On the

AWS console, click on VPC and go in the "Endpoint Services" section. The process is

the same for endpoints based on Network Load Balancers (see here for details).

Click on "Create endpoint Service", give it a name, Select "Gateway" as type and then

select the newly created load balancer:

Take note of the service name, you will need it when creating a new endpoint:

Click on "Endpoints", "Create Endpoint", select "Other endpoint services", paste the

service name we noted before and click on "Verify Service".

Select the VPC and a subnet to place the endpoint (we use a subnet that is reachable

from the Transit Gateway)

https://www.proud2becloud.com/aws-elastic-load-balancing-tips-and-tricks-from-basic-to-pro/

Repeat this step for the other subnets, and Don't forget to accept the connections!

When our endpoint is ready, we can modify our route table to use it and direct our

traffic to the gateway load balancer. Select "Gateway Load Balancer Endpoint" as the

target:

Now our network configuration is complete! We only need to create the autoscaling

group. Since this is a basic task, we will not cover it in this article.

Remember to create and include an instance profile in your launch template with this

policy attached:

{

 "Sid": "Allow Source-Dest check modification",

 "Effect": "Allow",

 "Action": "ec2:ModifyInstanceAttribute",

 "Resource": "*"

}

Note: this is a sample policy for our article. Remember that you may need to restrict its

scope for security reasons.

Once you finish defining the autoscaling, you should see your instances running in the

target group!

If you log into an instance, you will see that:

1. The health check port is reachable, and a simple curl gives you statistics.

2. The service is up and running.

3. Gwlbtun created two new network interfaces (gwi-* and gwo-*).

4. Our firewall rules are present.

5. Last but not least, Suricata will record network events.

Next steps

You can install a squid proxy server on our template and use it as a transparent proxy

to forward all logs to CloudWatch log for security investigation and auditing.

Hint: in /etc/squid/squid.conf you will need to enable "transparent mode", SSL

bumping and insert the right NAT rules with iptables.

You can filter outgoing traffic if you refine the firewall script (or use a graphical

interface like EasyWall.

To conclude

With a Gateway Load Balancer, you can customize how outgoing traffic from your VPC

is handled, gaining control and visibility using a highly available solution.

Now you should know what happens behind the scenes when you use a vendor

appliance, Implementations may vary, but the key concepts and technology are in

common.

Do you have other ideas or some additional unusual scenarios where a Gateway Load

Balancer can help? Let us know in the comments!

About Proud2beCloud

Proud2beCloud is a blog by beSharp, an Italian APN Premier Consulting Partner expert

in designing, implementing, and managing complex Cloud infrastructures and

advanced services on AWS. Before being writers, we are Cloud Experts working daily

with AWS services since 2007. We are hungry readers, innovative builders, and gem-

seekers. On Proud2beCloud, we regularly share our best AWS pro tips, configuration

insights, in-depth news, tips&tricks, how-tos, and many other resources. Take part in

the discussion!

https://github.com/jpylypiw/easywall
https://www.besharp.it/en/

Damiano Giorgi

Ex on-prem systems engineer, lazy and prone to automating boring tasks. In constant

search of technological innovations and new exciting things to experience. And that's why I

love Cloud Computing! At this moment, the only "hardware" I regularly dedicate myself to is

that my bass; if you can't find me in the office or in the band room try at the pub or at some

airport, then!

Copyright © 2011-2022 by beSharp spa - P.IVA IT02415160189

https://www.proud2becloud.com/author/damiano-giorgi/
https://www.proud2becloud.com/author/damiano-giorgi/

