@ PROUD2BE
cLouD!
Home > DevOps

A serverless approach for GitLab
Integration on AWS

27 May 2022 - 9 min. read

Amazon ECS AWS Fargate Cl/cD Containers Docker

Cost optimization and operational efficiency are key value drivers for a successful
Cloud adoption path; using managed serverless services significantly lowers

maintenance costs while speeding up operations.

In this article, you'll find how to better integrate GitLab pipelines on AWS using ECS

Fargate in a multi-environment scenario.

GitLab offers a lot of flexibility for computational resources: pipelines can run on
Kubernetes clusters, Docker, on-premise, or custom platforms using GitLab custom

executor drivers.

The tried and tested solution to run pipelines on the AWS Cloud uses EC2 instances as

computational resources.

This approach leads to some inefficiency: starting instances on-demand will make
pipeline executions slower and developers impatient (because of the initialization
time). Keeping a spare runner available for builds, on the other hand, will increase

costs.

We want to find a solution that can reduce execution time, ease maintenance and

optimize costs.

Containers have a faster initialization time and help decrease costs: billing will be

based only on used build time. Our goal is to use them for our pipeline executions,

https://www.proud2becloud.com/
https://www.proud2becloud.com/category/devops-en/
https://www.proud2becloud.com/tag/amazon-ecs-en/
https://www.proud2becloud.com/tag/aws-fargate-en/
https://www.proud2becloud.com/tag/ci-cd-en/
https://www.proud2becloud.com/tag/containers-en/
https://www.proud2becloud.com/tag/docker-en/
https://www.proud2becloud.com/

they will run on ECS clusters. Additionally, we will see how to use ECS Services for

autoscaling.

Before describing our implementation, we need to know a few things: GitLab Runners
are software agents that can execute pipeline scripts. We can configure a runner
instance to manage the pipeline's computational resources autoscaling by adding or

removing capacity as demand for build capacity changes.

In our scenario, we’ll also assume that we have three different environments:
development, staging, and production: we'll define different IAM roles for our runners,

so they will use the least privilege available to build and deploy our software.

GitLab Runners have associated tags that help choose the environment that will run

the execution step when defined in a pipeline.

In this example, you can see a pipeline that builds and deploys in different

environments:

stages:
- build dev
- deploy dev

- build staging
- deploy staging
- build production

- deploy production

build-dev:
stage: build dev
tags:
- dev
script:
- ./scripts/build.sh
artifacts:
paths:
- ./artifacts

expire in: 7d

deploy-dev:
stage: deploy dev
tags:
- dev
script:

- ./scripts/deploy.sh

build-staging:
stage: build staging
tags:
- staging
script:
- ./scripts/build.sh
artifacts:
paths:
- ./artifacts

expire in: 7d

deploy-staging:
stage: deploy staging
tags:

- staging
script:

- ./scripts/deploy.sh

build-production:
stage: build production
tags:
- production
script:
- ./scripts/build.sh
artifacts:
paths:
- ./artifacts

expire in: 7d

deploy-production:
stage: deploy production
tags:

- production
script:

- ./scripts/deploy.sh

Making a base Fargate runner

Let's assume that our codebase uses NodeJS: we can build a custom generic Docker

image with all the dependencies (including GitLab runner).

Dockerfile

FROM ubuntu:20.04

Ubuntu based GitLab runner with nodeJS, npm, and aws CLI

Install https://github.com/krallin/tini - a very small 'init' proce
ss

that helps process signals sent to the container properly.

ARG TINI VERSION=v0.19.0

COPY docker-entrypoint.sh /usr/local/bin/docker-entrypoint.sh

RUN 1n -snf /usr/share/zoneinfo/Europe/Rome /etc/localtime && echo Eu
rope/Rome > /etc/timezone \

&& echo "Installing base packaes" \

&& apt update && apt install -y curl gnupg unzip jq software-prope
rties-common \

&& echo "Installing awscli" \

&& curl "https://awscli.amazonaws.com/awscli-exe-linux-x86 64.zip"
-0 "awscliv2.zip" \

&& unzip awscliv2.zip \

&& ./aws/install \
&& rm -f awscliv2.zip \
&& apt update \
&& echo "Installing packages" \
&& apt install -y unzip openssh-server ca-certificates git git-1fs
nodejs npm \
&& echo "Installing tini and ssh" \
&& curl -Lo /usr/local/bin/tini https://github.com/krallin/tini/re
leases/download/S{TINI VERSION}/tini-amdé64 \
&& chmod +x /usr/local/bin/tini \
&& mkdir -p /run/sshd \
&& curl -L https://packages.gitlab.com/install/repositories/runne
r/gitlab-runner/script.deb.sh | bash \
&& apt install -y gitlab-runner \
&& rm -rf /var/lib/apt/lists/* \
&& rm -f /home/gitlab-runner/.bash logout \
&& git 1fs install --skip-repo \
&& chmod +x /usr/local/bin/docker-entrypoint.sh \

&& echo "Done"
EXPOSE 22
ENTRYPOINT ["tini", "--", "/usr/local/bin/docker-entrypoint.sh"]
docker-entrypoint.sh
#!/bin/sh
Create a folder to store the user's SSH keys if it does not exist.
USER_SSH_KEYS FOLDER=~/.ssh
[! -d ${USER_SSH KEYS FOLDER}] && mkdir -p ${USER _SSH KEYS FOLDER}
Copy contents from the “SSH PUBLIC KEY environment variable
to the “SUSER SSH KEYS FOLDER/authorized keys ™ file.

The environment variable must be set when the container starts.

echo "${SSH PUBLIC KEY}" > ${USER_SSH KEYS FOLDER}/authorized keys

Clear the “SSH PUBLIC KEY environment variable.

unset SSH PUBLIC_KEY

Start the SSH daemon
/usr/sbin/sshd -D

As you can see, there's no environment-dependent configuration.

Building a Runner for autoscaling (formerly Runner Manager)

This runner instance needs to be specialized to handle the environment configuration;
we'll use the Fargate Custom Executor provided by GitLab to interact and use different

ECS Fargate Clusters for different environments.

We'll automatically handle our runner registration with the GitLab server during the

Docker build phase by specifying its token using variables.

Our Fargate custom executor will need a configuration file ("config.toml") to specify a
cluster, subnets, security groups, and task definition for our pipeline execution. We’'ll

also handle this customization at build time.

First, we need to get a registration token from our GitLab server:

Go to your project CI/CD settings and expand the "Runners” section.

Runners Collapse

Runners are processes that pick up and execute CI/CD jobs for Gitlab. How do I configure runners?

Register as many runners as you want. You can register runners as separate users, on separate servers, and on your local machine.
Runners are either:

« lactive. - Available to run jobs.

« paused - Not available to run jobs.

Specific runners Shared runners

These runners are specific to this project. These runners are shared across this GitLab instance.

Shared Runners on GitLab.com run in autoscale mode and
y are powered by Google Cloud Platform. Autoscaling means
Set up a specific runner for a project

reduced wait times to spin up builds, and isolated VMs for

1. Install GitLab Runner and ensure it's running. each project, thus maximizing security
2. Register the runner with this URL:
neeps/ They're fre to usefor public open source projects and
limited to 400 CI minutes per month per group for private
And this registration token: projects. Read about all GitLab.com plans.
Enable shared runners for this project
Reset registration token
Show runner installation instructions Available shared runners: 42

Copy the registration token and GitLab server address

You can embed the GitLab server address in your DockerFile; we'll treat the

registration token as a secret.

As you’ll see below, these lines will customize our configuration file:

RUNNER TASK TAGS=$(echo ${RUNNER TAGS} | tr "," "-")

sed -i s/RUNNER TAGS/${RUNNER TASK TAGS}/g /tmp/ecs.toml

sed -i s/SUBNET/S${SUBNET}/g /tmp/ecs.toml

sed -1 s/SECURITY GROUP_ID/${SECURITY GROUP ID}/g /tmp/ecs.toml

DockerFile

FROM ubuntu:20.04

ARG GITLAB TOKEN

ARG RUNNER TAGS

ARG GITLAB URL="https://gitlab.myawesomecompany.com"
ARG SUBNET

ARG SECURITY GROUP_ID

COPY config.toml /tmp/
COPY ecs.toml /tmp/
COPY entrypoint /

COPY fargate-driver /tmp

RUN apt update && apt install -y curl unzip \

&& curl -L https://packages.gitlab.com/install/repositories/ru
nner/gitlab-runner/script.deb.sh [bash \

&& apt install -y gitlab-runner \

&& rm -rf /var/lib/apt/lists/* \

&& rm -f "/home/gitlab-runner/.bash logout" \

&& chmod +x /entrypoint \

&& mkdir -p /opt/gitlab-runner/metadata /opt/gitlab-runner/bui
lds /opt/gitlab-runner/cache \

&& curl -Lo /opt/gitlab-runner/fargate https://gitlab-runner-c
ustom-fargate-downloads.s3.amazonaws.com/latest/fargate-linux-amdé64 \

&& chmod +x /opt/gitlab-runner/fargate \

&& RUNNER TASK TAGS=$(echo S{RUNNER TAGS} | tr "," "=") \
&& sed -1 s/RUNNER TAGS/S{RUNNER TASK TAGS}/g /tmp/ecs.toml \
&& sed -i s/SUBNET/S{SUBNET}/g /tmp/ecs.toml \

&& sed -i s/SECURITY GROUP_ID/S{SECURITY GROUP_ID}/g /tmp/ecs.

toml \
&& cp /tmp/ecs.toml /etc/gitlab-runner/ \
&& echo "Token: S{GITLAB TOKEN} url: S${GITLAB URL} Tags: ${RUN
NER TAGS}" \
&& gitlab-runner register \
--non-interactive \
--url S${GITLAB URL} \
--registration-token ${GITLAB TOKEN} \
--template-config /tmp/config.toml \
--description "GitLab runner for S${RUNNER TAGS}" \
--executor "custom" \

--tag-list S{RUNNER TAGS}

ENTRYPOINT ["/entrypoint"]
CMD ["run", "--user=gitlab-runner", "--working-directory=/home/gitlab

-runner"]

We can build our runner manager using:

docker build . -t gitlab-runner-autoscaling --build-arg GITLAB TOKEN=
"generatedgitlabtoken" --build-arg RUNNER TAGS="dev" --build-arg SUBN
ET="subnet-12345" --build-arg SECURITY GROUP_ ID="sg-12345"

When Docker build finishes, you can see runner registration.

Available specific runners

@ #15140256 (Ew_y30E) @ 2

GitLab runner for dev

dev

config.toml

concurrent = 1

check_interval = 0

[session_server]

session timeout = 1800

[[runners]]
name = "ec2-ecs"
executor = "custom"
builds dir = "/opt/gitlab-runner/builds"
cache dir = "/opt/gitlab-runner/cache"
[runners.cache]
[runners.cache.s3]
[runners.cache.gcs]
[runners.custom]

config exec = "/opt/gitlab-runner/fargate"

config args ["--config", "/etc/gitlab-runner/ecs.toml", "custom"
, "config"]
prepare exec = "/opt/gitlab-runner/fargate"

prepare args = ["--config", "/etc/gitlab-runner/ecs.toml", "custo

m", "prepare"]

run_exec = "/opt/gitlab-runner/fargate"

run_args = ["--config", "/etc/gitlab-runner/ecs.toml", "custom",
"run"]

cleanup exec = "/opt/gitlab-runner/fargate"

cleanup args ["--config", "/etc/gitlab-runner/ecs.toml", "custo

m", "cleanup"]

ecs.toml

LogLevel = "info"
LogFormat = "text"
[Fargate]

Cluster = "acme-gitlab-RUNNER-TAGS-cluster"

Region =

Subnet =

SecurityGroup = "SECURITY GROUP_ID"
TaskDefinition

EnablePublicIP

[TaskMetadata]

"eu-west-1"

"SUBNET"

"gitlab-runner-RUNNER TAGS-task"

false

Directory = "/opt/gitlab-runner/metadata”

[SSH]

Username

Port

= 22

entrypoint

! /bin/bash

gitlab-runner data directory

DATA DIR="/etc/gitlab-runner"

Ilrootll

CONFIG_FILE=${CONFIG FILE:-$DATA DIR/config.toml}

custom certificate authority path

CA CERTIFICATES PATH=${CA CERTIFICATES PATH:-$DATA DIR/certs/ca.crt}

LOCAL CA PATH="/usr/local/share/ca-certificates/ca.crt"

update ca()

echo "Updating CA certificates..."

cp "${CA _CERTIFICATES PATH}"

{

"${LOCAL CA PATH}"

update-ca-certificates --fresh >/dev/null

if

[

-f "S${CA CERTIFICATES PATH}"]

14

then

update the ca if the custom ca is different than the current

cmp --silent "${CA CERTIFICATES PATH}"

ca

fi

"${LOCAL CA PATH}"

| | update

launch gitlab-runner passing all arguments

exec gitlab-runner "$@"

We can now push our Docker images to ECR repositories (we'll use gitlab-runner and
gitlab-runner-autoscaling as repository names); please refer to ECR documentation for

push commandes.

gitlab-runner 364050767034, dkr.ecr.eu-west-1.amazonaws.com/gitlab-runner

gitlab-runner-autoscaling 364050767034 dkr.ecr.eu-west-1 gitlab aling

Once we finish pushing, we can proceed to define task definitions.

We'll describe our configuration for the development environment only; configuration

steps will be the same for every environment.

You can find a complete guide on creating ECR repositories, task definitions, and

services here:

We will configure task definitions for runners in our environments (gitlab-runner-dev-

task, gitlab-runner-stage-task, gitlab-runner-prod-task).

Please note that the runner task definition has to define a container using “ci-
coordinator” as the container name. You also need to define a port mapping for runner
task definition for port 22 and a security group that accepts inbound connections on

port 22: GitLab will use an ssh connection to execute the pipeline.

~ Standard

Once we have defined our runner task definition, we can proceed to configure the task

definition for autoscaling.

https://www.proud2becloud.com/deploying-a-wordpress-site-to-the-aws-cloud-like-a-pro-our-guide-for-painless-maintenance-using-docker-and-aws-managed-services/

We then

Configure task and container definitions

A task definition specifies which containers are included in your task and now they ineract with each other. You can also specify data
volumes for your containers to use. Learn more

Task definition name™

Requires compatil

Task role

Network mode

Configure service

gitlab-runner-autoscaling-dev i]
FARGATE
Seiect a role - <

Optional IAM role that tasks can use to make API
requests to authorized AWS services. Create an
Amazon Elastic Container Service Task Role in the
1AM Console &

awsvpc L]
Ifyou choose <default>, ECS will start your
container using Docker's default networking
mode, which is Bridge on Linux and MAT on
Windows. Windows tasks support the <default>
and awsvpc network modes.

need to configure an ECS Service that keeps our runner alive.

A service lets you specify how many copies of your fask definition to run and maintain in a cluster. You can optionally use an Elastic
Load Balancing load balancer fo distribute incoming traffic to containers in your service. Amazon ECS maintains that number of
tasks and coordinates task scheduling with the load balancer. You can also optionally use Service Auto Scaling fo adjust the number

of tasks in your service

Launch type

Operating system family

Task Definition

Platform version

Cluster

Service name

Service type*

Number of tasks

Minimum healthy percent

Maximum percent

Deployment circuit breaker

® FARGATE [i]
EC2
EXTERNAL
Switch to capacity provider strategy [i]
Linux K]
Famil
gitiab-runner-autoscaling-dev - Enter a value

1 (atest) -

LATEST A]
acme-gitlab-dev-cluster v o
gitlab-runner-autoscaling-dev i)
REPLICA L]
1 L]
100 Li]
200 Li]
Disabled A]

And then define a role with an associated policy to start and terminate tasks on our

ECS cluster for the task role.

"Version": "2012-10-17",

"Statement": [

{

"Sid": "AllowRunTask",

"Effect": "Allow",
"Action": [
"ecs:RunTask",
"ecs:ListTasks",
"ecs:StartTask",
"ecs:StopTask",
"ecs:ListContainerInstances",
"ecs:DescribeTasks"
|
"Resource": |
"arn:aws:ecs:eu-west-l:account-id:task/acme-gitlab-de
v-cluster/*",
"arn:aws:ecs:eu-west-l:account-id:cluster/acme-gitlab
-dev-cluster",
"arn:aws:ecs:eu-west-1l:account-id:task-definition/*:

*ll

"arn:aws:ecs:*:account-id:container-instance/*/*"

b
{

"Sid": "AllowListTasks",

"Effect": "Allow",

"Action": |
"ecs:ListTaskDefinitions",
"ecs:DescribeTaskDefinition"

|

"Resource": "*"

}

After a minute, our runner service will be ready:

Task status: Stopped

Task Task Definition Last status

67345c77521947d1b319b1fabebd 7198 gitlab-runner-autoscaling-dev:1 RUNNING

We can now define a test execution pipeline in .gitlab-ci.ym.

test:
tags:
- dev
script:
- echo "It works!"

- for i in $(seq 1 30); do echo "."; sleep 1l; done

Our runner will run a new task when you execute the pipeline:

Services | Tasks ECSInstances Metrics = Scheduled Tasks Tags Capacity Providers

= swpal | | Actons -

Desired task status: (Running) Stopped

Launch type ALL v
Task Task definition Container instance Last status
6e9d70a5de1b4033983409e68 gitiab-runner-autoscaling-dev:2 - RUNNING
balea176e45d4e498e61154d10 gitiab-runner-dev-task:2 - PENDING

The task will run, and pipeline execution will start:

Container instance Last status Desired status
RUNNING

RUNNING

And, as you can see, execution is successful!

Status Pipeline

‘ @ passed | Update .gitlab-ci.yml file

& 00:02:18 #533067680 ¥ master -O- 3cc703a2 @
B 50 minutes ago latest

Once the pipeline execution finishes, our container terminates, and our build container

ends.

Troubleshooting

If you get a timeout error, verify your security groups definition and routing from the
subnets to the ECR repositories (if you use private subnets). If you use isolated
subnets, provide a VPC endpoint for ECR service

If you receive the error: "starting new Fargate task: running new task on Fargate: error
starting AWS Fargate Task: InvalidParameterException: No Container Instances were
found in your cluster.” verify that you have set a default capacity provider for your ECS

Cluster (click on "Update Cluster” and select a capacity provider)

Update cluster

Cluster acme-gitlab-dev-cluster

Default capacity provider strategy Provider 1 FARGATE - 0

© Add another provider (i)

Today we explored a serverless approach for running GitLab pipelines, scratching only
the surface. There's a lot more to explore: Spot Container Instances, cross-account

build and deploy, and different architectures (ARM and Windows, anyone?).

Do you already have a strategy for optimizing your builds? Have you already tinkered

with custom executors for GitLab pipelines? Let us know in the comments!

Resources:

e GitHub Repository

Damiano Giorgi

Ex on-prem systems engineer, lazy and prone to automating boring tasks. In constant
search of technological innovations and new exciting things to experience. And that's why |
love Cloud Computing! At this moment, the only "hardware” | regularly dedicate myself to is
that my bass; if you can't find me in the office or in the band room try at the pub or at some
airport, then!

https://www.proud2becloud.com/author/damiano-giorgi/
https://www.proud2becloud.com/author/damiano-giorgi/
https://github.com/besharpsrl/blog-gitlab-serverless-on-aws

Copyright © 2011-2022 by beSharp spa - P.IVA 1T02415160189

