
Home > DevOps

A serverless approach for GitLab
integration on AWS
27 May 2022 - 9 min. read

Amazon ECS AWS Fargate CI/CD Containers Docker

Cost optimization and operational efficiency are key value drivers for a successful

Cloud adoption path; using managed serverless services significantly lowers

maintenance costs while speeding up operations.

In this article, you'll find how to better integrate GitLab pipelines on AWS using ECS

Fargate in a multi-environment scenario.

GitLab offers a lot of flexibility for computational resources: pipelines can run on

Kubernetes clusters, Docker, on-premise, or custom platforms using GitLab custom

executor drivers.

The tried and tested solution to run pipelines on the AWS Cloud uses EC2 instances as

computational resources.

This approach leads to some inefficiency: starting instances on-demand will make

pipeline executions slower and developers impatient (because of the initialization

time). Keeping a spare runner available for builds, on the other hand, will increase

costs.

We want to find a solution that can reduce execution time, ease maintenance and

optimize costs.

Containers have a faster initialization time and help decrease costs: billing will be

based only on used build time. Our goal is to use them for our pipeline executions,

https://www.proud2becloud.com/
https://www.proud2becloud.com/category/devops-en/
https://www.proud2becloud.com/tag/amazon-ecs-en/
https://www.proud2becloud.com/tag/aws-fargate-en/
https://www.proud2becloud.com/tag/ci-cd-en/
https://www.proud2becloud.com/tag/containers-en/
https://www.proud2becloud.com/tag/docker-en/
https://www.proud2becloud.com/

they will run on ECS clusters. Additionally, we will see how to use ECS Services for

autoscaling.

Before describing our implementation, we need to know a few things: GitLab Runners

are software agents that can execute pipeline scripts. We can configure a runner

instance to manage the pipeline's computational resources autoscaling by adding or

removing capacity as demand for build capacity changes.

In our scenario, we’ll also assume that we have three different environments:

development, staging, and production: we'll define different IAM roles for our runners,

so they will use the least privilege available to build and deploy our software.

GitLab Runners have associated tags that help choose the environment that will run

the execution step when defined in a pipeline.

In this example, you can see a pipeline that builds and deploys in different

environments:

stages:

 - build dev

 - deploy dev

 - build staging

 - deploy staging

 - build production

 - deploy production

build-dev:

 stage: build dev

 tags:

 - dev

 script:

 - ./scripts/build.sh

 artifacts:

 paths:

 - ./artifacts

 expire_in: 7d

deploy-dev:

 stage: deploy dev

 tags:

 - dev

 script:

 - ./scripts/deploy.sh

build-staging:

 stage: build staging

 tags:

 - staging

 script:

 - ./scripts/build.sh

 artifacts:

 paths:

 - ./artifacts

 expire_in: 7d

 deploy-staging:

 stage: deploy staging

 tags:

 - staging

 script:

 - ./scripts/deploy.sh

build-production:

 stage: build production

 tags:

 - production

 script:

 - ./scripts/build.sh

 artifacts:

 paths:

 - ./artifacts

 expire_in: 7d

 deploy-production:

 stage: deploy production

 tags:

 - production

 script:

 - ./scripts/deploy.sh

Making a base Fargate runner

Let's assume that our codebase uses NodeJS: we can build a custom generic Docker

image with all the dependencies (including GitLab runner).

Dockerfile

FROM ubuntu:20.04

Ubuntu based GitLab runner with nodeJS, npm, and aws CLI

--

Install https://github.com/krallin/tini - a very small 'init' proce

ss

that helps process signals sent to the container properly.

--

ARG TINI_VERSION=v0.19.0

COPY docker-entrypoint.sh /usr/local/bin/docker-entrypoint.sh

RUN ln -snf /usr/share/zoneinfo/Europe/Rome /etc/localtime && echo Eu

rope/Rome > /etc/timezone \

 && echo "Installing base packaes" \

 && apt update && apt install -y curl gnupg unzip jq software-prope

rties-common \

 && echo "Installing awscli" \

 && curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip"

-o "awscliv2.zip" \

 && unzip awscliv2.zip \

 && ./aws/install \

 && rm -f awscliv2.zip \

 && apt update \

 && echo "Installing packages" \

 && apt install -y unzip openssh-server ca-certificates git git-lfs

nodejs npm \

 && echo "Installing tini and ssh" \

 && curl -Lo /usr/local/bin/tini https://github.com/krallin/tini/re

leases/download/${TINI_VERSION}/tini-amd64 \

 && chmod +x /usr/local/bin/tini \

 && mkdir -p /run/sshd \

 && curl -L https://packages.gitlab.com/install/repositories/runne

r/gitlab-runner/script.deb.sh | bash \

 && apt install -y gitlab-runner \

 && rm -rf /var/lib/apt/lists/* \

 && rm -f /home/gitlab-runner/.bash_logout \

 && git lfs install --skip-repo \

 && chmod +x /usr/local/bin/docker-entrypoint.sh \

 && echo "Done"

EXPOSE 22

ENTRYPOINT ["tini", "--", "/usr/local/bin/docker-entrypoint.sh"]

docker-entrypoint.sh

#!/bin/sh

Create a folder to store the user's SSH keys if it does not exist.

USER_SSH_KEYS_FOLDER=~/.ssh

[! -d ${USER_SSH_KEYS_FOLDER}] && mkdir -p ${USER_SSH_KEYS_FOLDER}

Copy contents from the `SSH_PUBLIC_KEY` environment variable

to the `$USER_SSH_KEYS_FOLDER/authorized_keys` file.

The environment variable must be set when the container starts.

echo "${SSH_PUBLIC_KEY}" > ${USER_SSH_KEYS_FOLDER}/authorized_keys

Clear the `SSH_PUBLIC_KEY` environment variable.

unset SSH_PUBLIC_KEY

Start the SSH daemon

/usr/sbin/sshd -D

As you can see, there's no environment-dependent configuration.

Building a Runner for autoscaling (formerly Runner Manager)

This runner instance needs to be specialized to handle the environment configuration;

we'll use the Fargate Custom Executor provided by GitLab to interact and use different

ECS Fargate Clusters for different environments.

We'll automatically handle our runner registration with the GitLab server during the

Docker build phase by specifying its token using variables.

Our Fargate custom executor will need a configuration file ("config.toml") to specify a

cluster, subnets, security groups, and task definition for our pipeline execution. We’ll

also handle this customization at build time.

First, we need to get a registration token from our GitLab server:

Go to your project CI/CD settings and expand the "Runners” section.

Copy the registration token and GitLab server address

You can embed the GitLab server address in your DockerFile; we'll treat the

registration token as a secret.

As you’ll see below, these lines will customize our configuration file:

RUNNER_TASK_TAGS=$(echo ${RUNNER_TAGS} | tr "," "-")

sed -i s/RUNNER_TAGS/${RUNNER_TASK_TAGS}/g /tmp/ecs.toml

sed -i s/SUBNET/${SUBNET}/g /tmp/ecs.toml

sed -i s/SECURITY_GROUP_ID/${SECURITY_GROUP_ID}/g /tmp/ecs.toml

DockerFile

FROM ubuntu:20.04

ARG GITLAB_TOKEN

ARG RUNNER_TAGS

ARG GITLAB_URL="https://gitlab.myawesomecompany.com"

ARG SUBNET

ARG SECURITY_GROUP_ID

COPY config.toml /tmp/

COPY ecs.toml /tmp/

COPY entrypoint /

COPY fargate-driver /tmp

RUN apt update && apt install -y curl unzip \

 && curl -L https://packages.gitlab.com/install/repositories/ru

nner/gitlab-runner/script.deb.sh | bash \

 && apt install -y gitlab-runner \

 && rm -rf /var/lib/apt/lists/* \

 && rm -f "/home/gitlab-runner/.bash_logout" \

 && chmod +x /entrypoint \

 && mkdir -p /opt/gitlab-runner/metadata /opt/gitlab-runner/bui

lds /opt/gitlab-runner/cache \

 && curl -Lo /opt/gitlab-runner/fargate https://gitlab-runner-c

ustom-fargate-downloads.s3.amazonaws.com/latest/fargate-linux-amd64 \

 && chmod +x /opt/gitlab-runner/fargate \

 && RUNNER_TASK_TAGS=$(echo ${RUNNER_TAGS} | tr "," "-") \

 && sed -i s/RUNNER_TAGS/${RUNNER_TASK_TAGS}/g /tmp/ecs.toml \

 && sed -i s/SUBNET/${SUBNET}/g /tmp/ecs.toml \

 && sed -i s/SECURITY_GROUP_ID/${SECURITY_GROUP_ID}/g /tmp/ecs.

toml \

 && cp /tmp/ecs.toml /etc/gitlab-runner/ \

 && echo "Token: ${GITLAB_TOKEN} url: ${GITLAB_URL} Tags: ${RUN

NER_TAGS}" \

 && gitlab-runner register \

 --non-interactive \

 --url ${GITLAB_URL} \

 --registration-token ${GITLAB_TOKEN} \

 --template-config /tmp/config.toml \

 --description "GitLab runner for ${RUNNER_TAGS}" \

 --executor "custom" \

 --tag-list ${RUNNER_TAGS}

ENTRYPOINT ["/entrypoint"]

CMD ["run", "--user=gitlab-runner", "--working-directory=/home/gitlab

-runner"]

We can build our runner manager using:

docker build . -t gitlab-runner-autoscaling --build-arg GITLAB_TOKEN=

"generatedgitlabtoken" --build-arg RUNNER_TAGS="dev" --build-arg SUBN

ET="subnet-12345" --build-arg SECURITY_GROUP_ID="sg-12345"

When Docker build finishes, you can see runner registration.

config.toml

concurrent = 1

check_interval = 0

[session_server]

 session_timeout = 1800

[[runners]]

 name = "ec2-ecs"

 executor = "custom"

 builds_dir = "/opt/gitlab-runner/builds"

 cache_dir = "/opt/gitlab-runner/cache"

 [runners.cache]

 [runners.cache.s3]

 [runners.cache.gcs]

 [runners.custom]

 config_exec = "/opt/gitlab-runner/fargate"

 config_args = ["--config", "/etc/gitlab-runner/ecs.toml", "custom"

, "config"]

 prepare_exec = "/opt/gitlab-runner/fargate"

 prepare_args = ["--config", "/etc/gitlab-runner/ecs.toml", "custo

m", "prepare"]

 run_exec = "/opt/gitlab-runner/fargate"

 run_args = ["--config", "/etc/gitlab-runner/ecs.toml", "custom",

"run"]

 cleanup_exec = "/opt/gitlab-runner/fargate"

 cleanup_args = ["--config", "/etc/gitlab-runner/ecs.toml", "custo

m", "cleanup"]

ecs.toml

LogLevel = "info"

LogFormat = "text"

[Fargate]

 Cluster = "acme-gitlab-RUNNER-TAGS-cluster"

 Region = "eu-west-1"

 Subnet = "SUBNET"

 SecurityGroup = "SECURITY_GROUP_ID"

 TaskDefinition = "gitlab-runner-RUNNER_TAGS-task"

 EnablePublicIP = false

[TaskMetadata]

 Directory = "/opt/gitlab-runner/metadata"

[SSH]

 Username = "root"

 Port = 22

entrypoint

!/bin/bash

gitlab-runner data directory

DATA_DIR="/etc/gitlab-runner"

CONFIG_FILE=${CONFIG_FILE:-$DATA_DIR/config.toml}

custom certificate authority path

CA_CERTIFICATES_PATH=${CA_CERTIFICATES_PATH:-$DATA_DIR/certs/ca.crt}

LOCAL_CA_PATH="/usr/local/share/ca-certificates/ca.crt"

update_ca() {

 echo "Updating CA certificates..."

 cp "${CA_CERTIFICATES_PATH}" "${LOCAL_CA_PATH}"

 update-ca-certificates --fresh >/dev/null

}

if [-f "${CA_CERTIFICATES_PATH}"]; then

 # update the ca if the custom ca is different than the current

 cmp --silent "${CA_CERTIFICATES_PATH}" "${LOCAL_CA_PATH}" || update

_ca

fi

launch gitlab-runner passing all arguments

exec gitlab-runner "$@"

We can now push our Docker images to ECR repositories (we'll use gitlab-runner and

gitlab-runner-autoscaling as repository names); please refer to ECR documentation for

push commands.

Once we finish pushing, we can proceed to define task definitions.

We'll describe our configuration for the development environment only; configuration

steps will be the same for every environment.

You can find a complete guide on creating ECR repositories, task definitions, and

services here:

We will configure task definitions for runners in our environments (gitlab-runner-dev-

task, gitlab-runner-stage-task, gitlab-runner-prod-task).

Please note that the runner task definition has to define a container using “ci-

coordinator” as the container name. You also need to define a port mapping for runner

task definition for port 22 and a security group that accepts inbound connections on

port 22: GitLab will use an ssh connection to execute the pipeline.

Once we have defined our runner task definition, we can proceed to configure the task

definition for autoscaling.

https://www.proud2becloud.com/deploying-a-wordpress-site-to-the-aws-cloud-like-a-pro-our-guide-for-painless-maintenance-using-docker-and-aws-managed-services/

We then need to configure an ECS Service that keeps our runner alive.

And then define a role with an associated policy to start and terminate tasks on our

ECS cluster for the task role.

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "AllowRunTask",

 "Effect": "Allow",

 "Action": [

 "ecs:RunTask",

 "ecs:ListTasks",

 "ecs:StartTask",

 "ecs:StopTask",

 "ecs:ListContainerInstances",

 "ecs:DescribeTasks"

],

 "Resource": [

 "arn:aws:ecs:eu-west-1:account-id:task/acme-gitlab-de

v-cluster/*",

 "arn:aws:ecs:eu-west-1:account-id:cluster/acme-gitlab

-dev-cluster",

 "arn:aws:ecs:eu-west-1:account-id:task-definition/*:

*",

 "arn:aws:ecs:*:account-id:container-instance/*/*"

]

 },

 {

 "Sid": "AllowListTasks",

 "Effect": "Allow",

 "Action": [

 "ecs:ListTaskDefinitions",

 "ecs:DescribeTaskDefinition"

],

 "Resource": "*"

 }

]

}

After a minute, our runner service will be ready:

We can now define a test execution pipeline in .gitlab-ci.yml:

test:

 tags:

 - dev

 script:

 - echo "It works!"

 - for i in $(seq 1 30); do echo "."; sleep 1; done

Our runner will run a new task when you execute the pipeline:

The task will run, and pipeline execution will start:

And, as you can see, execution is successful!

Once the pipeline execution finishes, our container terminates, and our build container

ends.

Damiano Giorgi

Ex on-prem systems engineer, lazy and prone to automating boring tasks. In constant

search of technological innovations and new exciting things to experience. And that's why I

love Cloud Computing! At this moment, the only "hardware" I regularly dedicate myself to is

that my bass; if you can't find me in the office or in the band room try at the pub or at some

airport, then!

Troubleshooting

If you get a timeout error, verify your security groups definition and routing from the

subnets to the ECR repositories (if you use private subnets). If you use isolated

subnets, provide a VPC endpoint for ECR service

If you receive the error: "starting new Fargate task: running new task on Fargate: error

starting AWS Fargate Task: InvalidParameterException: No Container Instances were

found in your cluster." verify that you have set a default capacity provider for your ECS

Cluster (click on "Update Cluster" and select a capacity provider)

Today we explored a serverless approach for running GitLab pipelines, scratching only

the surface. There's a lot more to explore: Spot Container Instances, cross-account

build and deploy, and different architectures (ARM and Windows, anyone?).

Do you already have a strategy for optimizing your builds? Have you already tinkered

with custom executors for GitLab pipelines? Let us know in the comments!

Resources:

GitHub Repository

https://www.proud2becloud.com/author/damiano-giorgi/
https://www.proud2becloud.com/author/damiano-giorgi/
https://github.com/besharpsrl/blog-gitlab-serverless-on-aws

Copyright © 2011-2022 by beSharp spa - P.IVA IT02415160189

