
Home > Management & Governance

Lake Formation: Data Security and
Data Governance with LF-TBAC
12 November 2021 - 10 min. read

AWS Glue AWS Identity and Access Management (IAM) AWS Lake Formation

Data Security and Governance Database

Introduction

Big Data has rapidly grown as a way to describe information obtained from

heterogeneous sources when it becomes incredibly complex to manage in terms of

Variety, Veracity, Value, Volume, and Velocity. Still, it can be considered the “New

Gold because of the potential to generate business value.”

Without adequate governance or quality, data lakes can quickly turn into

unmanageable data swamps. Data engineers know the data they need lives in these

swamps, but they won't be able to find, trust, or use it without a clear data governance

strategy.

A very common challenge is maintaining Governance, access control over users who

operate on the Data Lake, and protecting sensitive information. 

Companies need to centralize governance, access control, and a strategy backed by

managed services to fine-grain control user access to data.

Dealing with these situations typically requires two approaches: manual, more flexible

but complex; managed which requires your solution to fit into specific standards but

in return takes away all management complexities for the developers.

https://www.proud2becloud.com/
https://www.proud2becloud.com/category/management-governance-en/
https://www.proud2becloud.com/tag/aws-glue-en/
https://www.proud2becloud.com/tag/aws-identity-and-access-management-iam-en/
https://www.proud2becloud.com/tag/aws-lake-formation-en/
https://www.proud2becloud.com/tag/data-security-and-governance-en/
https://www.proud2becloud.com/tag/database/
https://www.proud2becloud.com/


This article will guide you through setting up your Data Lake with Lake Formation,

showing all the challenges that must be addressed during the process with a particular

eye on Security and Governance through the LF-TBAC approach. 

Tag-Based Access Control, in short TBAC, is an increasingly popular way to solve these

challenges, applying constraints based on tags associated with specific resources.

So, without further ado, let’s dig in!

What is TBAC access

Tag-based access control allows administrators of  IAM-enabled resources to create

access policies based on existing tags associated with eligible resources. 

Cloud providers manage permissions of both users and applications with policies,

documents with rules that reference resources. By applying tags to those resources is

possible to define simple and effective allow/deny conditions.

Using access management tags may reduce the number of access policies needed

within a cloud account while also providing a simplified way to grant access to a

heterogeneous group of resources.

Why S3 alone is not enough

S3,  like most AWS services, leverages the IAM principals for access management,

meaning that it is possible to define which parts of a bucket (files and folders/prefixes)

a single IAM principal can read/write; however is not possible to further restrict IAM

access to specific parts of an object, nor to certain data segments stored inside

objects.

For example, let’s assume that our application data is stored as a collection of parquet

files divided per country in different folders.

It is possible to constrain a user to access only the users belonging to a given

country. Still, there is no way to prevent them from reading the anagraphic information

(e.g., username and address) stored as columns in the parquet. 

The only way to prevent users from accessing sensitive information would be to

encrypt the columns before writing the files to S3, which can be slow, cumbersome,

and open a whole new ‘can of worm’ regarding key storage, sharing, and eventually

key decommissioning.



Furthermore, giving access to external entities using IAM principals is often a non-

trivial problem on its own.

Luckily, AWS offers a battery included solution to the S3 Data Lake permission

problem: enters AWS Lake Formation!

AWS Lake Formation is a fully managed service that simplifies building, securing, and

managing data lakes, automating many of the complex manual steps required to

create them. 

Lake Formation also provides its own permissions model, which is what we want to

explore in detail, that augments the classical AWS IAM permissions model. 

This centrally defined permissions model enables fine-grained access to data stored in

data lakes through a simple grant/revoke mechanism.

So, by leveraging the power of Lake Formation, we would like to demonstrate, with a

simple solution, how to address the aforementioned S3 challenges; let’s continue!

Leveraging TBAC approach in Lake Formation

To accompany the reader in understanding why AWS Lake Formation can be a good

choice in dealing with the complexities of managing a DataLake, we have prepared a

simple tutorial on how to migrate heterogeneous data.

From legacy on-prem databases into S3 while also creating a Lake Formation catalog

to deal with data cleansing, permissions, and further operations.

Our example implementation



AWS Glue migration of on-prem data
The first step for creating a Data Lake is obviously to fetch, transform and insert the

data. In this simple example, we used a mocked users dataset from a MySQL database.

AWS glue is the natural way to connect to the heterogeneous data source, infer their

schema import and transform the data and finally write them on S3 as we explained in

detail here.

After the data is loaded in a temporary S3 bucket, you need to create a Database in

Lake Formation to connect to a Glue Crawler and run it on your S3 prefix to populate

a Glue Catalog for your data.  

Just go to the AWS Lake Formation console, in the Databases page under the Data

catalog tab, and fill in a Database name and your S3 path.

Create a new Database from Lake Formation

Note: creating a database from Lake Formation assures correct permissions are

associated with it, we could have done the same thing from AWS Glue but we would

have needed extra effort to modify permissions for the next steps.

After the database is created, we need the Glue Catalog, which is a metastore

containing the schema (schema-on-read) of your data saved in S3 (usually as parquet

files). 

Having a Glue Schema is necessary to set up the AWS Lake Formation access layer in

https://www.proud2becloud.com/using-aws-to-ingest-and-analyze-data-from-an-iot-device-a-simple-example-with-aurora-and-athena/


front of your S3 Data Lake. To make it, just create a Crawler and link it to the same S3

path as the Database, and set that DB as the crawler output.

Setup of a basic AWS Glue Crawler

In order to use the Crawler, an IAM role is necessary, but luckily AWS has a step for

that in the Crawler creation wizard:

How to create an IAM role for using the Crawler

Once the Crawler is created, and data is imported into the catalog, we are ready for

the next step.

Cloudwatch Logs demonstrating that Crawler worked correctly

AWS Lake Formation



By having a Glue Data catalog in place, it is time to set up Lake Formation to finally

manage user access permissions. 

In order to do so, let’s start by going to the Lake Formation dashboard and removing

the usual S3 access permissions.

Lake Formation dashboard

So we can go to Data Catalog Settings and uncheck Use only IAM access control for

new databases and Use only IAM access control for new tables in new databases.  

By default, access to Data Catalog resources and Amazon S3 locations are controlled

solely by AWS Identity and Access Management (IAM) policies, unchecking the values

allows Individual Lake Formation permissions to take effect.

Lake Formation data catalog setting: disable both the Use only flag

Once access responsibilities are delegated to Lake Formation, we can remove the

access for the standard IAMAllowedPrincipals IAM group, in the data lake Permissions

tab, select the permission of the IAM group and click Revoke.

https://docs.aws.amazon.com/lake-formation/latest/dg/change-settings.html


Revoke standard IAMAllowedPrincipals permissions

The user creating the DataLake will also be listed in this section with admin privileges,

if you want that user to retain access to the data you can leave the permission as they

are, otherwise you can either revoke the permission to the user/role or restrict them. 

Note: if you need to add a Data lake administrator principal, you can do so by going to

the Administrative roles and tasks and adding a Data lake admin.

Add admin and db creator console

Once all these steps are completed, it is time to start defining Lake Formation tags

(LF-Tags from now on), which will be used to restrict access to the data lake.  

From the LF-Tags page under the Permissions tab create a new LF-Tag and for key

use level and add private, sensitive, and public as value separated by comma just like

in the figure. Click Add LF-tag.



LF-Tag creation

Now once created, how can we use these tags to enforce access control? First of all,

let’s go to the database section and select our database, created at the beginning of

the tutorial. In database actions, you can select the tag you’ve created and the

permission level.  

Usually, we leave the database access open and restrict permissions on a per table and

fields basis, but this is different for each database. In our example, we assign the level

public to the whole example database.

Edit LF-Tag for the entire database

Now if we want to restrict access to the columns in the user table containing personal

info, we can go to the table to modify, select the column and change its LF-tag from

public to private (see figures).



Schema of our example database in which we select a column

Editing a per column LF-Tag

Now we just need to define which IAM principals (i.e, our test user) will have access to

a given LF-Tag. To do so, let’s go to Data lake permissions and grant permissions to an

IAM user/role/group to access resources tagged with a given LF-Tag .



Grant read permission

This example shows how to give a user access to all the resources tagged with “level”:

“public”. 

This user will thus be able to see all our databases except for the personal data tagged

as private. Another user may have access to both public and private information, just

add the private level in the LF-Tag section or modify columns tags according to your

needs.

We can now query the database table using our test user which, based on our set of

permissions, is not able to see the first_name column (which is tagged as private).

Athena is used to querying data and demonstrating that first_name is not shown in the table

select because is tagged as private

As shown in the figure we have successfully managed to deny our test user the right to

see a “sensible” column of our choice. 

We would like to encourage the user to experiment in adding or removing also

describe and select options from the LF-Tag permissions in the Data Lake section to



see that we can also deny listing both database and tables.

Note: as of Nov 3, 2021: to enhance security, AWS Lake Formation also added support

for managed VPC endpoints via AWS PrivateLink to access a data lake in a Virtual

Private Cloud.

Feature in preview: row-level security

Lake Formation is still a young service, so there is much room for improvement. AWS

is constantly working on increasing features for its services, and Lake Formation is no

exception.

AWS Lake Formation already allows setting access policies to hide data, such as a

column with sensitive information, from users who do not have permission to view that

data. 

Row-level security will add up to that by allowing to set row-level policies in addition

to column-level policies. 

An example could be setting a policy that gives a data scientist access to only the

experiment data marked with a specific id.

Another interesting aspect would be to share the same Data Lake for different

datasets to reduce costs and management efforts.

To Sum up

In this article, we have seen how we can leverage the power of AWS Services for

Storage and Data Analytics to tackle the challenge imposed by Big Data, in particular

how to manage access, permissions, and governance.

We have shown that AWS Glue crawlers can effectively retrieve unstructured data

from temporary repositories, being them databases like RDS or on-premises, or object

storages like S3, and obtain a schema to populate a Glue Catalog.

We have seen that starting from S3 and a metadata store, it is possible to create a

Lake Formation Catalog on top of S3, entirely managed by AWS, to drastically reduce

the management effort to set up and administrate a Data lake.

We have briefly seen what is a Tag-Based Access Control (TBAC) methodology and

how can be effectively used to manage access and permissions.

https://aws.amazon.com/privatelink/


Alessandro Gaggia

Head of software development at beSharp and Full-Stack Developer, I keep all our

codebases up-to-date. I write code in almost any language, but Typescript is my favorite. I

live for IT, Game design, Cinema, Comics, and... good food. Drawing is my passion!

Matteo Moroni

DevOps and Solution Architect at beSharp, I deal with developing Saas, Data Analysis, and

HPC solutions, and with the design of unconventional architectures with different

We have shown that AWS Lake Formation can apply IAM policies and TBAC rules to

give or restrain access to users and groups even on a per-column/row basis. We

demonstrated that with Lake Formation and AWS Glue, we could obscure sensitive

data to specific principals.

We have described LF-Tags in detail, with a simple tutorial. Finally, We have talked

about Row-Level Security.

To conclude, we can say that for challenges regarding Big Data and proper storage

solutions, with an eye for security and governance matters, there are always two

possible choices to make: DIY or opt for a managed solution.

In this article, we chose a managed solution to show all the benefits of a more rigid

approach to the problem. Despite being less flexible to adaptation, it offers a service

more adherent to best practices and less burden in administration and governance.

As always, feel free to comment in the section below, and reach us for any doubt,

question or idea!

See you on Proud2beCloud in a couple of weeks for a new story!

https://www.proud2becloud.com/author/alessandro-gaggia/
https://www.proud2becloud.com/author/alessandro-gaggia/
https://www.proud2becloud.com/author/matteo-moroni/
https://www.proud2becloud.com/author/matteo-moroni/


complexity. Passionate about computer science and physics, I have always worked in the

first and I have a PhD in the second. Talking about anything technical and nerdy makes me

happy!

Copyright © 2011-2021 by beSharp srl - P.IVA IT02415160189


