
Home > Training & Certifications

MLOps on AWS
24 September 2021 - 16 min. read

Continuous Deployment Continuous Integration Machine Learning MLOps

SageMaker

When we approach modern Machine Learning problems in an AWS environment, there

is more than traditional data preparation, model training, and final inferences to

consider. Also, pure computing power is not the only concern we must deal with in

creating an ML solution.

There is a substantial difference between creating and testing a Machine Learning

model inside a Jupyter Notebook locally and releasing it on a production infrastructure

capable of generating business value. 

The complexities of going live with a Machine Learning workflow in the Cloud are

called a deployment gap and we will see together through this article how to tackle it

by combining speed and agility in modeling and training with criteria of solidity,

scalability, and resilience required by production environments.

The procedure we’ll dive into is similar to what happened with the DevOps model for

"traditional" software development, and the MLOps paradigm, this is how we call it, is

commonly proposed as "an end-to-end process to design, create and manage Machine

Learning applications in a reproducible, testable and evolutionary way".

So as we will guide you through the following paragraphs, we will dive deep into the

reasons and principles behind the MLOps paradigm and how it easily relates to the

AWS ecosystem and the best practices of the AWS Well-Architected Framework.

Let’s start!

https://www.proud2becloud.com/
https://www.proud2becloud.com/category/training-certifications-en/
https://www.proud2becloud.com/tag/continuous-deployment-en/
https://www.proud2becloud.com/tag/continuous-integration-en/
https://www.proud2becloud.com/tag/machine-learning/
https://www.proud2becloud.com/tag/mlops-en/
https://www.proud2becloud.com/tag/sagemaker-en/
https://www.proud2becloud.com/
https://ml-ops.org/content/motivation#deployment-gap
https://ml-ops.org/content/motivation#mlops-definition


Why do we need MLOps?

As said before, Machine Learning workloads can be essentially seen as complex pieces

of software, so we can still apply "traditional" software practices. Nonetheless, due to

its experimental nature, Machine Learning brings to the table some essential

differences, which require a lifecycle management paradigm tailored to their needs. 

These differences occur at all the various steps of a workload and contribute

significantly to the deployment gap we talked about, so a description is obliged:

Code
Managing code in Machine Learning appliances is a complex matter. Let’s see why!

Collaboration on model experiments among data scientists is not as easy as sharing

traditional code files: Jupyter Notebooks allow for writing and executing code,

resulting in more difficult git chores to keep code synchronized between users, with

frequent merge conflicts.

Developers must code on different sub-projects: ETL jobs, model logic, training and

validation, inference logic, and Infrastructure-as-Code templates. All of these separate

projects must be centrally managed and adequately versioned!

For modern software applications, there are many consolidated Version Control

procedures like conventional commit, feature branching, squash and rebase, and

continuous integration. 

These techniques however, are not always applicable to Jupyter Notebooks since, as

stated before, they are not simple text files.

Development
Data scientists need to try many combinations of datasets, features, modeling

techniques, algorithms, and parameter configurations to find the solution which best

extracts business value. 

The key point is finding ways to track both succeeded and failed experiments while

maintaining reproducibility and code reusability. Pursuing this goal means having

instruments to allow for quick rollbacks and efficient monitoring of results, better if

with visual tools.

Testing

https://www.conventionalcommits.org/en/v1.0.0/
https://medium.com/@slamflipstrom/a-beginners-guide-to-squashing-commits-with-git-rebase-8185cf6e62ec
https://martinfowler.com/articles/branching-patterns.html


Testing a Machine Learning workload is more complex than testing traditional

software. 

Dataset requires continuous validation. Models developed by data scientists require

ongoing quality evaluation, training validation, and performance checks. 

All these checks add to the typical unit and integration testing, defining the concept of

Continuous Training, which is required to avoid model aging and concept drift. 

Unique to Machine Learning workflows, its purpose is to trigger retraining and serving

the models automatically.

Deployment
Deployment of Machine Learning models in the Cloud is a challenging task. It typically

requires creating various multi-step pipelines which serve to retrain and deploy the

models automatically. 

This approach adds complexity to the solution and requires automating steps done

manually by data scientists when training and validating new models in a project's

experimental phase. 

It is crucial to create efficient retrain procedures!

Monitoring in Production
Machine Learning models are prone to decay much faster than "traditional" software.

They can have reduced performances due to suboptimal coding, incorrect hardware

choices in training and inference phases, and evolving data sets.

A proper methodology must take this degradation into account; therefore, we need a

tracking mechanism to summarize workload statistics, monitor performances, and

send alarm notifications. 

All of these procedures must be automated and are called Continuous Monitoring,

which also has the added benefit of enabling Continuous Training by measuring

meaningful thresholds.

We also want to apply rollbacks when a model inference deviates from selected

scoring thresholds as quickly as possible to try new feature combinations.

https://www-ai.cs.tu-dortmund.de/LEHRE/FACHPROJEKT/SS12/paper/concept-drift/tsymbal2004.pdf


Continuous Integration and Continuous
Deployment
Machine Learning shares similar approaches to standard CI/CD pipelines of modern

software applications: source control, unit testing, integration testing, continuous

delivery of packages. 

Nonetheless, models and data sets require particular interventions.

Continuous integration now also requires, as said before, testing and validating data,

data schemas, and models.

In this context, continuous delivery must be designed as an ML training pipeline

capable of automatically deploying the inference as a reachable service.

As you can see, there is much on the table that makes structuring a Machine Learning

project a very complex task. 

Before introducing the reader to the MLOps methodology, which puts all these crucial

aspects under its umbrella, we will see how a typical Machine Learning workflow is

structured, keeping into account what we have said until now.

Let’s go on!

A typical Machine Learning workflow in the Cloud

Courtesy of https://ml-ops.org/content/end-to-end-ml-workflow

A Machine Learning workflow is not meant to be linear, just like traditional software. It

is mainly composed of three distinct layers: data, model, and code, and one will

continuously give and retrieve feedback from others. 

https://ml-ops.org/content/end-to-end-ml-workflow


So while with traditional software, we can say that each step that composes a

workflow can be atomic and somehow isolated, in Machine Learning, this is not

entirely true as the layers are deeply intertwined. 

A typical example is when changes to the data set require retraining or re-thinking a

model. A different model also usually needs modifications to the code that runs it.

Let’s see together what every Layer is composed of and how it works.

The Data layer
The Data layer comprises all the tasks needed to manipulate data and make it available

for model design and training: data ingestion, data inspection, cleaning, and finally,

data preprocessing.

Data for real-world problems can be in the numbers of GB or even TB, continuously

increasing, so we need proper storage for handling massive data lakes. 

The storage must be robust, allow efficient parallel processing, and integrate easily

with tools for ETL jobs.

This layer is the most crucial, representing 80% of the work done in a Machine

Learning workflow; two famous quotes state this fact: "garbage in, garbage out" and

"your model is only as good as your data.” 

Most of these concepts are the prerogative of a Data Analytics practice, deeply

entangled with Machine Learning, and we will analyze them in detail later on in this

article.

The Model layer
The Model layer contains all the operations to design, experiment, train, and validate

one or more Machine Learning models. ML practitioners conduct trials on data in this

layer, try algorithms on different hardware solutions, and do Hyperparameters tuning.

This layer is typically subject to frequent changes due to updates on both Data and

Code, necessary to avoid concept drift. To properly handle its lifecycle management at

scale, we must define automatic procedures for retraining and validation.

The Model layer is also a stage where discussions occur, between data scientists and

stakeholders, about model validation, conceptual soundness, and biases on expected

https://en.wikipedia.org/wiki/Extract,_transform,_load
https://towardsdatascience.com/workflow-of-a-machine-learning-project-ec1dba419b94#:~:text=In%20machine%20learning%2C%20there%20is,to%20actually%20perform%20the%20analysis.


results.

The Code layer
In the Code layer, we define a set of procedures to put a model in production, manage

inferences requests, store a model's metadata, analyze overall performances, monitor

the workflow (debugging, logging, auditing), and orchestrate CI/CD/CT/CM

automatisms.

A good Code layer allows for a continuous feedback model, where the model evolves

in time, taking into account the results of ongoing inferences.

All these three layers are managed by "sub-pipelines," which add up to each other to

form a "macro-pipeline" known as Machine Learning Pipeline. 

Automatically designing, building, and running this Pipeline while reducing the

deployment gap in the process is the core of the MLOps paradigm. 

MLOps on AWS: the four pillars

MLOps aims to make developing and maintaining Machine Learning workflows

seamless and efficient. The data science community generally agrees that it is not a

single technical solution, yet a series of best practices and guiding principles around

Machine Learning.

Courtesy of https://valohai.com/mlops/

An MLOps approach involves operations, techniques, and tools, which we can group

into four main pillars: Collaboration, Reproducibility, Continuity, and Monitoring. 

https://towardsdatascience.com/architecting-a-machine-learning-pipeline-a847f094d1c7
https://valohai.com/mlops/


We will now focus on each one, giving multiple practical examples that show how

AWS, with many of its services, can be an invaluable tool to develop solutions that

adhere to the paradigm’s best practices.

Collaboration
A good Machine Learning workflow should be collaborative, and collaboration occurs

on all the ML pipelines.

Starting from Data Layer, we need a shared infrastructure, which means a distributed

data lake. AWS offers several different storage solutions for this purpose, like Amazon

Redshift, which is best for Data Warehousing, or Amazon FSx for Lustre, perfect as a

distributed file system. Still, the most common service used for data lake creation is

Amazon S3. 

To properly maintain a data lake, we need to regularly ingest data from different

sources and manage shared access between collaborators, ensuring data is always up-

to-date. 

This is not an easy task, and for that, we can take advantage of S3 LakeFormation, a

managed service that helps in creating and maintaining a data lake, by working as a

wrapper around AWS Glue and Glue Studio, in particular simplifying Glue’s Crawler

set-up and maintenance.

S3 LakeFormation can also take care of data and collaborators' permission rules by

managing users and roles underneath AWS Glue Catalog. This feature is crucial as

collaboration also means maintaining governance over the data lake, avoiding

unintended data manipulation by allowing or denying access to specific resources

inside a catalog.

For the model layer, data scientists need a tool for collaborative design and coding of

Machine Learning models. It must allow multiple users to work on the same

experiment, quickly show the results of each collaborator, grant real-time pair

programming, and avoid code regressions and merge conflicts as much as possible.

SageMaker is the all-in-one framework of choice for doing Machine Learning on AWS,

and Amazon SageMaker Studio is a unique IDE explicitly developed for working with

Jupyter Notebooks having collaboration in mind.

https://www.proud2becloud.com/costruire-un-data-lake-su-aws-con-aws-lake-formation/
https://www.proud2becloud.com/a-clustering-process-with-sagemaker-experiments-a-real-world-use-case/


SageMaker Studio allows sharing a dedicated EC2 instance between different

registered users, in which it is possible to save all the experiments done while

developing a Machine Learning model. This instance can host Jupyter Notebooks

directly or receive results, attachments, and graphics via API from other Notebook

instances. 

SageMaker Studio is also directly integrated with SageMaker Experiments and

SageMaker Feature Store.

The first one is a set of API that allows data scientists to record and archive a model

trial, from tuning to validation, and report the results in the IDE console. The latter is a

purpose-built managed store for sharing up-to-date parameters for different model

trials.

SageMaker Feature Store represents a considerable step forward in maintaining

governance over data parameters across different teams, mainly because it avoids a

typical misused pattern of having different sets of parameters for training and

inference. It is also a perfect solution to ensure that every data scientist working on a

project has complete labeling visibility.

Reproducibility
To be robust, fault-tolerant, and scale properly, just like "traditional" software

applications, a Machine Learning workflow must be reproducible.

One crucial point we must address with care, as we said before, is Version Control: we

must ensure code, data, model metadata, and features are appropriately versioned. 

For Jupyter Notebooks, Git or AWS CodeCommit are natural choices, but managing

the information of different trials, especially model metadata, requires some

considerations.

We can use SageMaker Feature Store for metadata and features. It allows us to store

data directly online in a managed store or integrate with AWS Glue (and S3

LakeFomation). It also enables data encryption using AWS KMS and can be controlled

via API or inside SageMaker Studio.

When you want a workflow to be reproducible, you also mean experimenting on a

larger scale, even in parallel, in a quick, predictable, and automatic way.



SageMaker offers different ways to mix and match different Machine Learning

algorithms, and AWS allows for three possible approaches for executing a model.

Managed Algorithm: SageMaker offers up to 13 managed algorithms for common ML

scenarios, and for each one, detailed documentation describes software and hardware

specifications.

Bring your own algorithm: data scientists can quickly introduce custom logic on

notebooks, as long as the model respects SageMaker fit() requirements.

Bring your own Container: particular models such as DBScan require custom Kernels

for running the algorithm, so SageMaker allows registering a custom container with

the special Kernel and the code for running the model.

Data Scientists can tackle all these approaches together. 

SageMaker gives the possibility to define the hardware on which running a model

training or validation by selecting the Instance Type and the Instance Size in the

model properties, which is extremely important as different algorithms require CPU or

GPU optimized machines. 

To fine-tune a model, SageMaker can run different Hyperparameter Tuning Strategies:

Random Search and Bayesian Search. These two strategies are entirely automatic,

granting a way to test a more significant number of trial combinations in a fraction of

time.

To enhancing the repeatability of experiments, we also need to manage different ways

of doing data preprocessing (different data sets applied to the same model). For this,

we have AWS Data Wrangler, which contains over 300 built-in data transformations

to quickly normalize, transform, and combine features without having to write any

code.

AWS Data Wrangler can be a good choice when the ML problem you’re addressing is

somehow standardized, but for most cases, the datasets are extremely diverse, which

means tackling ETL jobs on your own. 

For custom ETL jobs, AWS Glue is still the way to go, as it also allows saving Job

Crawlers and Glue Catalogs (for repeatability). Along with AWS Glue and AWS Glue

Studio, we have also tried AWS Glue Elastic Views, a new service to help to manage

different data sources together.

https://www.proud2becloud.com/iot-ingestion-and-ml-analytics-pipeline-with-aws-iot-kinesis-and-sagemaker/
https://www.proud2becloud.com/en/a-clustering-process-with-sagemaker-experiments-a-real-world-use-case/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://www.proud2becloud.com/aws-glue-elastic-views-an-almost-no-code-etl-and-aggregation-framework/


Continuity
To make our Machine Learning workflow continuous, we must use pipeline automation

as much as possible to manage its entire lifecycle.

Courtesy of https://ml-ops.org/content/three-levels-of-ml-software

We can break the entire ML workflow into three significant pipelines, one for each

Machine Learning Layer.

Data engineering pipeline

The Data pipeline is composed of Ingestion, Exploration, Validation, Cleaning, and

Splitting phases. 

The Ingestion phase on AWS typically means bringing raw data to S3, using any

available tool and technology: direct-API access, custom Lambda crawlers, S3

LakeFormation, or Amazon Kinesis Firehose. 

Then we have a preprocessing ETL phase, which is always required! 

AWS Glue is the most versatile among all the available tools for ETL, as it allows

reading and aggregating information from all the previous services by using Glue

Crawlers. These routines can poll from different data sources for new data.

We can manage Exploration, Validation, and Cleaning steps by creating custom scripts

in a language of choice (e.g., Python) or using Jupyter Notebook, both orchestrated

via AWS Step Functions. 

https://ml-ops.org/content/three-levels-of-ml-software
https://www.proud2becloud.com/orchestrating-etl-pipelines-on-aws-with-glue-stepfunctions-and-cloudformation/
https://www.proud2becloud.com/orchestrating-data-analytics-and-business-intelligence-pipelines-via-step-function/


AWS Data Wrangler represents another viable solution, as it can automatically take

care of all the steps and connect directly to Amazon SageMaker Pipelines.

Model pipeline

The Model pipeline consists of Training, Evaluation, Testing, and Packaging phases.

These phases can be managed directly from Jupyter Notebook files and integrated

into a pipeline using AWS StepFunctions SageMaker SDK, which allows calling

SageMaker functions inside a StepFunction script.

This exploit gives extreme flexibility as it allows to:

1. Quickly start SageMaker training jobs with all the configured parameters.

2. Evaluate models using SageMaker pre-build evaluation scores.

3. Run multiple automated tests directly from code.

4. Record all the steps in SageMaker Experiments.

Having the logic of this Pipeline on Jupyter Notebooks has the added benefit of

having everything versioned and easily testable.

Packaging can be managed through Elastic Container Registry APIs, directly from a

Jupyter Notebook or an external script. 

Deployment pipeline

The Deployment Pipeline runs the CI/CD part and is responsible for taking models

online during the Training, Testing, and Production phases. A key aspect during this

Pipeline is that the demand for computational resources is different for all three stages

and changes over time.

For example, training will require more resources than testing and production at first,

but later on, as the demand for inferences will grow, production requirements will be

higher (Dynamic Deployment).

We can apply Advanced deployment strategies typical of "traditional" software

development to tackle ML workflows, including A/B testing, canary deployments, and

blue/green deployments.



Every aspect of deployment can benefit from Infrastructure as Code techniques and a

combination of AWS services like AWS CodePipeline, CloudFormation, and AWS

StepFunctions.

Monitoring
Finally, good Machine Learning workflows must be monitorable, and monitoring

occurs at various stages.

We have performance monitoring, which allows understanding how a model behaves

in time. By continuously having feedback based on new inferences, we can avoid

model aging (overfitting) and concept drift.

SageMaker Model Monitor helps during this phase as it can do real-time monitoring,

detecting biases and divergences using Anomaly Detection techniques, and sending

alerts to apply immediate remediation. 

When a model starts performing lower than the predefined threshold, our pipeline will

begin a retraining process with an augmented data set, consisting of new information

from predictions, different Hyperparameters combinations, or applying re-labeling on

the data set features.

SageMaker Clarify is another service that we can exploit in the monitoring process. It

detects potential bias during data preparation, model training, and production for

selected critical features in the data set. 

For example, it can check for bias related to age in the initial dataset or in a trained

model and generates detailed reports that quantify different types of possible bias.

SageMaker Clarify also includes feature importance graphs for explaining model

predictions.

Debugging a Machine Learning model, as we can see, is a long, complex, and costly

process! There is another useful AWS service: SageMaker Debugger; it captures

training metrics in real-time, such as data loss during regression, and sends alerts

when anomalies are detected. 

SageMaker Debugger is great for immediately rectifying wrong model predictions.

Logging on AWS can be managed on the totality of the Pipeline using Amazon

CloudWatch, which is available with all the services presented. Cloudwatch can be

https://www.proud2becloud.com/how-to-create-and-maintain-an-aws-serverless-infrastructure-with-troposphere-and-codepipeline/
https://www.proud2becloud.com/how-to-setup-a-continuous-deployment-pipeline-on-aws-for-ecs-blue-green-deployments/


further enhanced using Kibana through ElasticSearch to have an easy way to explore

log data.

We can also use CloudWatch to trigger automatic rollback procedures in case of

alarms on some key metrics. Rollback is also triggered by failed deployments.

Finally, the reproducibility, continuity, and monitoring of an ML workload enables the

cost/performance fine-tuning process, which happens cyclically across all the

workload lifecycle. 

Sum Up

In this article, we’ve dived into the characteristics of the MLOps paradigm, showing

how it took concepts and practices from its DevOps counterpart to allow Machine

Learning to scale up to real-world problems and solve the so-called deployment gap.

We’ve shown that, while traditional software workloads have more linear lifecycles,

Machine Learning problems are based on three macro-areas: Data, Model, and Code

which are deeply interconnected and provide continuous feedback to each other.

We’ve seen how to tackle these particular workflows and how MLOps can manage

some unique aspects like complexities in managing model’s code in Jupyter

Notebooks, exploring datasets efficiently with correct ETL jobs, and providing fast and

flexible feedback loops based on production metrics.

Models are the second most crucial thing after data. We’ve learned some strategies to

avoid concept drift and model aging in time, such as Continuous Training, which

requires a proper monitoring solution to provide quality metrics over inferences and an

adequate pipeline to invoke new model analysis.

AWS provides some managed services to help with model training and pipelines in

general, like SageMaker AutoPilot and SageMaker Pipelines.

We have also seen that AWS allows for multiple ways of creating and deploying

models for inference, such as using pre-constructed models or bringing your container

with custom code and algorithms. All images are saved and retrieved from Elastic

Container Registry.

We’ve talked about how collaboration is critical due to the experimental nature of

Machine Learning problems and how AWS helps by providing an all-in-one managed

https://www.proud2becloud.com/logging-best-practices-on-aws-from-an-elk-to-an-ekk-stack/


Alessandro Gaggia

Head of software development at beSharp and Full-Stack Developer, I keep all our

codebases up-to-date. I write code in almost any language, but Typescript is my favorite. I

live for IT, Game design, Cinema, Comics, and... good food. Drawing is my passion!

Copyright © 2011-2021 by beSharp srl - P.IVA IT02415160189

IDE called SageMaker Studio.

We have features like SageMaker Experiments for managing multiple experiments,

SageMaker Feature Store for efficiently collecting and transforming data labels, or

SageMaker Model Monitoring and SageMaker Debugger for checking model

correctness and find eventual bugs.

We’ve also discussed techniques to make our Machine Learning infrastructure solid,

repeatable, and flexible, easy to scale on-demand based on requirements evolving in

time. 

Such methods involve using AWS Cloudformation templates to take advantage of

Infrastructure as Code for repeatability, AWS Step Functions for structuring a state-

machine to manage all the macro-areas, and tools like AWS CodeBuild, CodeDeploy,

and CodePipeline to design proper CI/CD flows. 

We hope you’ve enjoyed your time reading this article and hopefully learned a few

tricks to manage your Machine Learning workflows better.

As said before, if Machine Learning is your thing, we encourage again having a look at

our articles with use-cases and analysis on what AWS offers to tackle ML problems

here on Proud2beCloud! 

As always, feel free to comment in the section below, and reach us for any doubt,

question or idea! See you on #Proud2beCloud in a couple of weeks for another

exciting story!

https://www.proud2becloud.com/author/alessandro-gaggia/
https://www.proud2becloud.com/author/alessandro-gaggia/
https://www.proud2becloud.com/aws-glue-elastic-views-an-almost-no-code-etl-and-aggregation-framework/proud2becloud@besharp.it

