@ PROUD2BE
cLouD!
Home > DevOps

Deploying a WordPress site to the
AWS Cloud like a pro: our guide for
painless maintenance using Docker
and AWS Managed Services.

20 August 2021 - 7 min. read

Containers Docker Wordpress

WordPress is the easiest way to manage and create content. Its flexibility is loved by
authors: with a couple of plugins you can do everything from hosting a cute kittens

photo gallery to hosting an e-commerce site.

Let’s face it: seen from the IT guy point of view, WordPress is a technical nightmare.
When someone has to deal with it the horror begins: scalability is challenging,

installation isn’t scripted and a LAMP stack is not always easy to maintain.

In this article we’ll give you some technical hints and examples to ease your

relationship with WordPress in a cloud environment based on AWS.

We'll try to use as many AWS managed services as we can to be able to offload boring

and dangerous tasks.

Database

We want our database to be highly available and scalable, so obviously we’ll use

Amazon Aurora with MySQL compatibility.

With Amazon Aurora we don’t have to worry about space usage because the
underlying storage can automatically scale when needed. In addition, with point-in-

time recovery you can restore your data with the granularity of a second.

https://www.proud2becloud.com/
https://www.proud2becloud.com/category/devops-en/
https://www.proud2becloud.com/tag/containers-en/
https://www.proud2becloud.com/tag/docker-en/
https://www.proud2becloud.com/tag/wordpress/
https://www.proud2becloud.com/

You can also use Multi-AZ configurations with read replicas that can take over in case

of an Availability Zone failure.

AWS will automatically assign a reader endpoint and a writer endpoint (with a DNS

record) when you create an Amazon Aurora Cluster instance.

In case of a failure (or maintenance) the read replica will be automatically promoted to
become the writer and the endpoint will be automatically updated: simply configure
your wp-config.php file with the writer endpoint and AWS will do all the work for you.
If you know that your database will be stressed by a lot of read traffic you can add up
to 15 read replicas to a single Aurora Cluster but you’ll need to tell WordPress to use
them. In this case, you can take advantage of the hyperdb plugin: with hyperdb you
can define as many database read replicas as you want in your configuration file and
use them. The example configuration file is well documented; here’s an example

configuration:

wpdb->add database(array (
'host' => mydbcluster.cluster-123456789012.us-east-1.rds.amazonaws.c
om,
'user' => DB _USER,
'password’ => DB_PASSWORD,
'name’ => DB NAME,

));

Swpdb->add database(array(

'"host' => mydbcluster.cluster-ro-123456789012.us-east-1.rds.
amazonaws .com,

'user' => DB_USER,

'password’ => DB_PASSWORD,

'name' => DB_NAME,

'write' => 0,

'read' => 1,

))

Instead, if you are starting small and don’t know how and when your site will need to

scale, Aurora Serverless is the best choice for you: it has the ability to scale the

https://wordpress.org/plugins/hyperdb/
https://plugins.trac.wordpress.org/browser/hyperdb/trunk/db-config.php

compute layer and to “pause” if your website isn’t accessed, so you can also save

money !

Compute

We want to take advantage of the elasticity of the cloud, so using EC2 and
Autoscaling Groups can be the natural choice.Also, we can go further and use Docker

containers with an ECS Fargate cluster with a little bit of application refactoring.

Using containers reduces maintenance activities for operating systems updates and
makes scaling more easily. As a bonus point we can also automate the deployment

workflow using pipelines.
WordPress offers a pre-built container image with a vanilla installation:

We can start building our docker image adapting it to our needs, installing plugins
automatically using wp-cli: in our example we’ll install the wordpress-seo plugin (we’ll

assume that you already have a working wp-config.php file)

Please note that this is only an example. We suggest you to tailor and customize your
Dockerfile to your needs: we always recommend that you know what software you are

using and running, especially in containerized solutions.

Example Dockerfile:

FROM wordpress

COPY wp-config.php /usr/src/wordpress/

RUN curl -O https://raw.githubusercontent.com/wp-cli/builds/gh-pages
/phar/wp-cli.phar && chmod +x wp-cli.phar && mv wp-cli.phar /usr/loca
1/bin/wp

WORKDIR /usr/src/wordpress/

RUN wp --allow-root core update

RUN wp --allow-root plugin install wordpress-seo

WORKDIR /var/www/html

https://hub.docker.com/_/wordpress
http://raw.githubusercontent.com/wp-cli/builds/gh-pages/phar/wp-cli.phar

We just automated our installation, making it maintainable and ready for testing in

different environments.

Simply run:

docker build . -t myawesomewordpresscontainer

and you’ll have a ready-to-go container to deploy. You can use a docker-compose.yml
file to test on your local pc, run it in a development environment or in production using
ECS.

Creating a serverless execution environment on AWS ECS is pretty simple:

On AWS Console go to ECS -> Create Cluster, select “Networking Only” to define a
Fargate Cluster:

Select cluster template

The following cluster templates are available to simplify cluster creation. Additional configuration and integrations can be
added later.

Networking only o EC2 Linux +

Networking
Resources to be created:
Resources to be created:

Cluster
Cluster
VPC (optional)
VPC
Subnets (optional)
Subnets

0 For use with either AWS Fargate or

Auto Scaling group with Linux AMI
External instance capacity.

EC2 Windows +
Networking

Resources 10 be created:

Cluster
VPC
Subnets

Auto Scaling group with Windows AMI

*Required Cancel Next step

Give it a name:

Configure cluster

Cluster name* wordpress-ecs (1]

Networking

Create a new VPC for your cluster to use. A VPC is an isolated portion of the AWS Cloud populated by AWS objects, such
as Fargate tasks

Create VPC Create a new VPC for this cluster

Tags

Add key Add value

CloudWatch Container Insights

CloudWatch Container Insights is a monitoring and troubleshooting solution for containerized applications and microservices. It
collects, aggregates, and summarizes compute utilization such as CPU, memory, disk, and network; and diagnostic information
such as container restart failures to help you isolate issues with your clusters and resolve them quickly. (7' Learn more

CloudWatch Container Insights Enable Container Insights

*Required Cancel Previous

Create a Docker Repository for the image: Select “Amazon ECR -> Repositories

ECR Repositories Create repository

Create repository

General settings

Visibility settings Info
Choase the visibility setting for the repository.
O Private

Access is managed by IAM and repository policy permissians.

Public

Publicly visible and accessible for image pulls.

Repository name
Provide a concise name. A developer should be able to identify the repasitory contents by the name

O <1 <1 eu-west-1.amazonaws.com/ | wordpress-repd|

14 out of 256 characters maximum (2 minimum). The name must start with a letter and can only contain lowercase letters, numbers,
hyphens, underscores, and forward slashes.

Tag immutability Info
Enable tag immutability to prevent image tags from being overwritten by subsequent image pushes using the same tag. Disable tag
mmutability to allow image tags to be overwritten.

(P Disabled

@® Once a repository is created, the visibility setting of the repository can't be changed.

Image scan settings

Scan on push
Enable scan on push to have each image automatically scanned after being pushed to a repository. If disabled, each image scan must be
manually started to get scan results

® Disabled

Encryption settings

KMS encryption
You can use AWS Key Management Service (KMS) to encrypt images stored in this repository, instead of using the default encryption
settings.

 Disabled

@ The KMS encryption settings cannot be changed or disabled after the repository is created.

cancel
Click on the just created ECR repository by clicking on “View push commands” you’ll

get ready-to-go instructions to build and upload the container to the repository:

ECR > Repositories > wordpress-repo

wordpress-repo View push commands_|

Once image upload is done you can add a task definition for the ECS cluster,.he task

definition will define how to run our container in the ECS cluster:

Click on “task-definitions” on the AWS Console sidebar and select “Create new Task

Definition”:

Task Definitions

Create new Task Definition Z e

Select launch type compatibility
Select which launch type you want your task definition to be compatible with based on where you want to launch your task.

FARGATE EC2

Price based on task size Price based on resource usage
Reqires network mode awsvpc Multiple network modes available
AWS-managed infrastructure, no Amazon EC2 instances Self-managed infrastructure using Amazon EC2 instances
‘o manage
EXTERNAL

Price based on instance-hours and additional charges for
other AWS services used

Self-managed on-premise infrastructure with ECS
Anywhere

Give the task definition a name and assign the resources.

Since we are developing a small demo we’ll select 0.25 CPU units and 0.5 GB of
memory (keep also in mind that it is always better to scale horizontally having multiple

small containers).

Click on “Add Container” to add the container definition, so we can specify everything

for the Docker execution Environment

~ Standard
Container name* wordpress-container (3]
Image* | QENEENEND. . ccr.eu-west-1. amazonaws.comiygrdpress;repg latest| [i]
Private repository i)

authentication*

Memory Limits (MiB) Soft limit - o

© Add Hard limit

Port mappings [i]

80 tep ~ (]

© Add port mapping

Don’t forget to map port 80!

After you create the task definition you can define a service to run the container:

Deploy i

Environment

Existing cluster

» Compute configuration (advanced)

Deployment configuration

Application type Info
Specify what type of application you want to rur

Launch a standalone task that runs and
terminates. For example, a batch job.

O Service Task
p o

a web application.

Task definition

Select an existing task definition. To create a new task definition, go to Task definitions.
Specify revision manually
Manually input revision instead of choosing from the 100 most recent revisions for the selected
task definition family.

Family Revision

wordpress-task v 1 (LATEST) v
Service name
Assign a unique name for this service.

wordpress-service

Desired tasks
Specify the number of tasks to launch.

2

» Deployment options

As you can see we already choose to deploy 2 tasks, so our wordpress installation will
be highly available and load balanced.

We’re not showing you security groups and balancing options because they are

common configuration tasks on AWS (need help ? Write to us!).
Storage

Since our container is stateless (by definition, here you can find more the details about
differences between stateful and stateless services:
https://www.proud2becloud.com/stateful-vs-stateless-the-good-the-bad-and-the-

ugly/) we need to solve a final problem: static assets and persistence.

Our service of choice is Amazon EFS, a shared and distributed file system. We can
store assets that are in the wp-content/uploads directory by simply adding an EFS

filesystem it in the task definition and giving it a name:

https://www.proud2becloud.com/stateful-vs-stateless-the-good-the-bad-and-the-ugly/

Add volume

Name wp-assets i}
Volume type ~ EFS - 0

File system ID - Z e

Create an Amazon Elastic File System in
the Amazon EFS console . (2

Access point ID - [S N }

Create an access point for your file system
in the Amazon EFS console . &'

Root directory ¢
Encryption in transit Enable transit encryption
EFS IAM authorization Enable IAM authorization

» Advanced configuration

*Required Cancel m
And then define the mount in the container:

STORAGE AND LOGGING

© Add moun point

Don’t forget to add an AWS Backup job for the EFS share!

There are also WordPress plugins that can take advantage of S3. Since we want to
keep our demo installation simple, we won’t use them for this specific case, but you

can, consider them while planning your installation.
Caching

We will not show these steps but, as a general rule of thumb, you can reduce compute
cost and make the site more responsive for users by adding a CloudFront distribution

in front of your load balancer.

You can also use an application cache for user sessions and database query offloading

using Amazon Elasticache for Redis with the redis-cache WordPress plugin.

Deploying a new Elasticache for Redis cluster is a matter of minutes: search for

Elasticache on the AWS console and then click “Create”:

Create your Amazon ElastiCache cluster

Cluster engine '@ Redis
In-memory data structure store used as database, cache and message
broker. ElastiCache for Redis offers Multi-AZ with Auto-Failaver and
enhanced robustness.

Cluster Mode enabled

Memcached
High-performance, distributed memory object caching system, intended
for use in speeding up dynamic web applications.

Location

Choose a location

® Amazon Cloud
Use Amazon's cloud for your ElastiCache instances

On-Premises
Create your ElastiCache instances on AWS Qutposts. You need to create
asubnet 1D on an Qutpost first

Redis settings

Ensure you have reviewed the five workload characteristics to consider when right sizing Amazon ElastiCache Redis clusters. Learn mq

Name | wordpress-redis-cluster [i]

Description | Elasticache Redis fluster for wordpress article [i]

Engine version compatibility = 6.x AN]
Port | 6379 [i]

Parameter group | defaultredisé.x v O

Node type | cache.t3.micro (0.5 GiB) - O

Number of replicas | 2 [i]

Multi-AZ v [i]

In the “Advanced Redis settings” create a new subnet group and select at least two
subnets in different availability zones to keep the cluster private and highly available,
select or create a security group to grant wordpress containers access to the

Elasticache cluster.

« Advanced Redis settings

Advanced setings have common defaults set to give you the fastest way to get started. You can modify these now or afier your cluster has been created

Subnetgroup Create new - 0
Name | redis-wordpress-subnet-group (]
Description (i}
VPCID vpc-05a7fcéd > 0
Subnets [i]
Subnetid - Avaliabiltyzone - CIDRBlock -
subnet-f3ee3694 eu-west-le 10.100.130.024
subnet-9b9931d2 eu-west-la 10.100.128.024
SUDNer-10580849 eu-west-1b 10.100.4.0/24
subnetbaed3Sdd eu-west-lc 10.100.134.0/24
@ subnetces2c4sS euwestla 10.100.132.0/24
@ subnetcc3dd997 euwest-1b 10.100.133.0024
subnet-f133d7aa eu-west-1b 10.100.128.0/24
subnet-ae7ed5ch eu-west-lc 10.100.2.0024
subner1ba7ic73 eu-west-la 10.100.0.024
subnet-2a0caBéc eu-west-1b 10.100.1.0/24
subnet.4leta®2d eu-westlc 10.100.5.024
subnet-60139017 eu-west-1a 10.100.3.024
Availability zones placement @ No preference o
Select zones
Security
Security groups default (sg-0c927563) & o

Click on “Create” and your cluster will be ready in a couple of minutes.

Add in the Dockerfile this line to install the redis-cache plugin

RUN --allow-root plugin install redis-cache

And then configure it to cache user sessions using the the primary endpoint shown in

cluster details:

Configuration Endpoint: -
Primary Endpoint: wordpress-redis-cluster.03dhcr.ng.0001.euwl.cache.amazonaws.com:6379
Engine: Redis

Engine Version Compatibility: 6.0.5

WAF

To prevent and mitigate attacks and common vulnerabilities consider enabling AWS
WAF and configure it to use Managed Rules for AWS Firewall ruleset. You can enable
AWS WAF on the Application Load Balancer or on the CloudFront Distribution (if you

choose to use it)

Maintaining containers: ThePipelines!

Our choice for automating our WordPress container maintenance is the
CodeBuild/CodePipeline duo.

simply follow these steps to deploy pipelines: https:/www.proud2becloud.com/aws-

fargate-services-deployment-with-continuous-delivery-pipeline/

You can also rely on a blu/green deployment strategy. Here's how to do it:
https://www.proud2becloud.com/how-to-setup-a-continuous-deployment-pipeline-

on-aws-for-ecs-blue-green-deployments/

Starting a containerized WordPress deployment from scratch isn’t hard: with the right
managed services you’ll offload a lot of tasks like maintaining high availability, keeping

the focus on maintaining content.

What's your experience with containerized WordPress deployment? Have you ever

faced any challenges?
That’s all for today.

Keep reading and see you in 14 days on #Proud2beCloud!

https://www.proud2becloud.com/aws-fargate-services-deployment-with-continuous-delivery-pipeline/
https://www.proud2becloud.com/how-to-setup-a-continuous-deployment-pipeline-on-aws-for-ecs-blue-green-deployments/

Damiano Giorgi

Ex on-prem systems engineer, lazy and prone to automating boring tasks. In constant
search of technological innovations and new exciting things to experience. And that's why |
love Cloud Computing! At this moment, the only "hardware" | regularly dedicate myself to is
that my bass; if you can't find me in the office or in the band room try at the pub or at some
airport, then!

Copyright © 2011-2021 by beSharp srl - PIVA IT02415160189

https://www.proud2becloud.com/author/damiano-giorgi/
https://www.proud2becloud.com/author/damiano-giorgi/

