we make IT run.

USING AWS TO INGEST AND ANALYZE DATA FROM
AN 10T DEVICE: A SIMPLE EXAMPLE WITH AURORA
AND ATHENA

Amazon Athena Amazon Kinesis Data Firehose Amazon Rekognition Amazon S3

Aurora Serverless AWS Glue Databrew Data and Analytics Data Ingestion

Data Visualization Dataset Internet of Things (IoT)

beSharp | 11 December 2020

With the Internet of Things quickly becoming a thing of the present (rather of the future...) the
number of devices sending collected on the field is increasing exponentially and so does the
amount of data, thus data ingestion and analysis has become of the hottest topics of the current IT
landscape. AWS offers a wide range of services which allow us to ingest, collect, store, analyze and

visualize huge amounts of data quickly and efficiently.

1010101010

7N g °
— B 4 eoa
" -

In this brief article, we would like to present a very simple real-world application we developed as a
proof of concept demonstration to show the data ingestion and analysis pipeline in AWS and loT

events and conferences.

We customized an existing Nespresso coffee machine to take photos of people making coffees
using custom electronics, a Raspberry Pi Zero and a micro camera. The image is immediately
uploaded to S3 and an AWS Lambda triggered by the upload analyzes the image using Amazon
Rekognition. After the analysis of the image is complete, if the image contains the face of a person,
a record is written by the Lambda function in an Aurora MySQL serverless together with metadata
output from the Rekognition ML algorithm: does the person have eyeglass? beard? mustaches? is
she/he smiling? Finally, a very simple web application was developed and connected to the

database to show statistics.

https://blog.besharp.it/en/
https://blog.besharp.it/en/tag/amazon-athena-en/
https://blog.besharp.it/en/tag/amazon-kinesis-data-firehose-en/
https://blog.besharp.it/en/tag/amazon-rekognition-en/
https://blog.besharp.it/en/tag/amazon-s3-en/
https://blog.besharp.it/en/tag/aurora-serverless-en/
https://blog.besharp.it/en/tag/aws-glue-databrew-en/
https://blog.besharp.it/en/tag/data-analytics-en/
https://blog.besharp.it/en/tag/data-ingestion-en/
https://blog.besharp.it/en/tag/data-visualization-en/
https://blog.besharp.it/en/tag/dataset-en/
https://blog.besharp.it/en/tag/internet-of-things-iot-en/

Furthermore, an AWS Athena query cleans the data and moves them to a new S3 bucket as

parguet files.

Obviously for our trivial application many of these steps are redundant but they aim to

demonstrate the power of AWS building blocks in creating very complex data pipelines.

A scheme of the proposed infrastructure is shown below.

Coffee
Machine

s3
T Aurora MysQL
R\ e ;[

[2)

AWS Rekognition

Hereafter we describe all the steps of a common data ingestion and transformation and how we are

doing them in our trivial application. Let’s dive deep!

The Ingestion/Storage Step

A very common AWS data ingestion flow is to use AWS loT Core (Secure MQTT) or Api Gateway
(REST APIs or Websocket) as the data entry point, directly connect the data entry point to Kinesis
Firehose (using loT rules or Api gateway Service integrations) and finally leverage the powerful
Firehose features for data buffering, buffer transformation (AWS Lamlbda functions), stream
encryption (AWS KMS), data compression (GZIP) and data delivery of compressed and
automatically encrypted message batches to both long term object storage (S3) and/or to a data

warehouse (AWS Redshift) for complex analytical queries on the huge amount of data collected.

Always having all the ingested data saved in AWS S3 is an essential step, not only as a lifesaver in
case of problems with other hotter storages but also to create a shared data lake which can be later

analysed with Athena EMR, Glue Jobs, Glue databrew and also external tools.

Furthermore you can use Firehose to directly deliver data to AWS ElasticSearch for real time
analysis and if needed it is also very easy to deliver the batches of ingested data to a relational
database (e.g. Aurora Serverless Postgres/MySQL) using either AWS Data Migration tasks or event
based Lambda functions. Migrating inserted data (or an aggregation of inserted data) to an existing
relational database is often quite useful if you need them to enrich an existing legacy application

already using the database.

If you decide to use Lambda functions to move the ingested data to Aurora, which is usually faster
and more scalable, you can either use the Firehose transform functions directly or a different

function triggered each time Firehose writes an object to S3.

10T devices

p * User A Route 53

CloudFront

WebApp

ﬂ{f}ﬂ API Gateway

AWS Kinesis
Firehose

Lambda
WebApp BE

Lambda Aurora
Serverless

Elasticsearch s3

The beauty of Firehose is that you can also add it as a subsequent step! In our simple coffee
application we are not using it and images and analyses are saved directly in S3 and AWS Aurora
Serverless MySQL by Lambda Functions. Anyway, if the app grows bigger we can integrate it

flawlessly!

Analysis Step

Once your data is in a storage, it is time to analyse them. Methodologies can differ greatly and
common examples range from simple queries run in relational databases to long and complex
analytical jobs run in Redshift data warehouses and to near real time processing using Kinesis

connected EMR or ElasticSearch.

In our case we can just run simple queries using our web application backend and display the

results in the browser.

However in the future we may be interested in running much more advanced queries on our data
and maybe do some data quality inspection and machine learning training. So we need to have
these data out of Aurora and into S3 in order to analyze them with Glue jobs and Databrew and if
needed to load them easily with Apache Spark either from Glue or AWS EMR. To do this, we can
follow several paths: for example we could use AWS DataMigration service to move the data to S3
as Parquet files or maybe we could create a Glue Job, load the data using Glue Connection to RDS

and Spark and then write them into S3.

After this would need to run a Glue crawler in order to create DataCatalog that will be used by

Athena and Glue for queries and jobs.

Here however we will show you a different and sometimes much flexible path to export, clean and

catalogue our data from a relational database: Athena custom data source.

By default, Athena comes with S3 - Glue data Catalog integrations but AWS recently added the
possibility to add customized data sources such as JDBC connected databases, AWS CloudWatch
or to query S3 but using a custom Apache Hive metastore. In our case we are interested in
connecting to MySQL Aurora Serverless so we need to go to Athena Home, configure a workgroup

named AmazonAthenaPreviewFunctionality and then add an S3 query output path:

Ahena Queryedter Seved cuen i Dswsouces Virkpuip: Amesenitm.

After this, we can go back to athena home and select Connect Data Source:

Athena Query editor Saved queries History [

~

L

Data source Connect data source
AwsDataCatalog 7

We are presented with a web page where we need to select the type of data source: we go for
Query a data source (beta) ad MySQL:

= -

¥

i
£

4

After that you are requested to enter the name and description of the new catalog and to select or

create a Lambda Function to manage the connection. Choose the name you like the most and click
Configure new AWS Lambda Function.

Connection details: MySQL
Choose a Lambda function that is configured to connect to your data source, or create and configure a Lambda function to handle the connection. Learn more G

Lambda function Choose o configure a new AWS Lambda function to connect to the data source.

| & | Configure new AWS Lambda function (2

ame to specify this data source within a SQL statement

IECTOM Connect

You are presented with this page where you need to enter the JDBC connection uri for Aurora and
select the subnet and security group for the Lambda function that athena will use to establish the
JDBC connection. Choose them wisely otherwise the Lambda won’t reach the Aurora instance!

Application settings

Applic
The sa

AthenaldbeCont

DisablespillEncryption
set o flse’data spilled to 53
false

LambdaFunctionName
The name you will give to

LambdaMemory
mbda memory in M3

3008

Iacknowledge that this app creates custom IAM roles. Info

Secret Name prefix is used to store the DB creds in AWS Secret Manager. This is essential for a
production environment. Leaving it blank means no integration will be created. After you select
deploy and the Lambda you just created in the Athena dashboard you’ll see a new catalog different

from the standard AwsGlueCatalog:

~
L=
Data source Connect data source
[iotarticolo v]

Note that at first, Databases and tables won’t appear. Fear not: If you go to the lambda functions

you’ll see failures and in cloudwatch you’ll see an error like:

Catalog is not supported in multiplexer. After registering the catalog in Athena, mus
t set 'iotarticolo connection string' environment variable in Lambda. See JDBC connect
or README for further details.: java.lang.RuntimeException

Go on and set the required Lambda function env variable by using the same JDBC connection
string used as DefaultConnection string in the preceding step. After this, the connection will work

and you’ll be able to query your DB directly from Athena! Sweet!

However at a closer look we immediately notice that something is afoul with the data: here is a

screen of what we can read directly from MySQL.:

As you can see, Athena was smart enough to convert tinyint(1) data to bool but could not fetch
mysql datetime columns. This is due to a very well known problem with jdbc connector and the

easier fix is to just create a new field were the datetime is a string in Java datetime format:

UPDATE coffees SET coffees.coffee hour str=DATE_ FORMAT (coffee hour, '%Y-%m-%d $H:%i:%
s')i
ALTER TABLE coffees ADD COLUMN coffee_ hour_ str VARCHAR(255) AFTER coffee hour;

At this point, Athena will be able to read the new field.
And now we are ready for a beautiful trick: let’s just go to the Glue dashboard and create a new

Database. A database is just a logical container for metadate. You can chose the name you prefer:

Add database

Database name

fotarticologlue

~ Description and location (optional)
Location @

At this point we can go back to Athena and run a query like this:

CREATE table iotarticologlue.coffees
WITH (

format='PARQUET', external location='s3://besharp-athena/coffees parquet', parquet c
ompression='GZIP'
) AS SELECT photo_url,smile,beard,mustache,glasses,coffee hour_ str FROM
"iotarticolo"."iot"."coffees"
WHERE photo url LIKE 'https://%';

onnect data source. Newqueryl © Newquery2 © Newquery3 © NewqueryS © Newquey6 © Newquey7 © Newqueys © +

This will create a new Table in the Database we just added to our Glue data catalog and save all the
data in S3 as a GZIP Parquet file. Furthermore you could also change the compression (e.g. Snappy
or BZIP) if you like.

The query will also filter out the date with a bad S3 url in photo_url!

So we now have a super-fast way to export our DB to S3 as parquet while automatically creating

the Glue catalog (the query does also that for free under the hood).

JDBC LAmbda
Athena & (Managed by AWS)

AWS Glue [
Catalog

And now it is trivial to visualize this new catalog in AWS Glue databrew: got to dashboard and
create a new project:

o} :MEW "
512 &
°

now create a new dataset in the add dataset section:

Connect to new dataset info

»
L File upload Your source from Data Catalog Info

s3://besharp-athena/coffees_parquet/
Data lake/data store

® Ppermission from AWS Lake Formation will apply to datasets with this icon
& Amazon 3

AWS Glue Data Catalog AWS Glue databases) iotarticologlue

5 Amazon S3 tables Q
5 Amazon Redshift tables 1 @
i Amazon RDS tables

Table name v Last updated Size
Y AlLAWS Glue tables

. o coffees B WG EED 3.6 KB
Others December 11, 2020, 4:07:01 pm

. AWS Data Exchange
52

Preview

And create the project! If you encounter an error try to set the object name to parquet in s3 and to
crawl again the table with Glue crawlers (Databrew is pretty new too!)

And voila a beautiful data visualization of our dataset complete with column statistics!

Conclusion

In this article, we described a very simple loT application using Rekognition and Aurora. We
explained how it can be enhanced with firehose and finally we used Athena to transform and clean
the collected data and save them very easily to parquet to be analyzed with Glue Databrew,
Athena, and other AWS tools such as EMR.

Have you ever tried something similar for your Data Analysis process?

Feel free to write to us about your solutions: we’ll be glad to offer you a “connected” coffee @

That’s all for today.

Keep reading and see you in 14 days on #Proud2beCloud!

we make [T run

beSharp

Dal 2011 beSharp guida le aziende italiane sul Cloud. Dalla piccola impresa
alla grande multinazionale, dal manifatturiero al terziario avanzato, aiutiamo
le realta piu all’lavanguardia a realizzare progetti innovativi in campo IT.

Get in touch

beSharp.it
proud2becloud@besharp.it

Copyright © 2011-2021 by beSharp srl - P.IVA 1T0O2415160189

https://www.besharp.it/
mailto:proud2becloud@besharp.it

