
beSharp | 29 May 2020

PART II: PYTHON LOGGING BEST PRACTICES AND

HOW TO INTEGRATE WITH KIBANA DASHBOARD

THROUGH AWS KINESIS STREAM AND AMAZON

ELASTICSEARCH SERVICE

Amazon Elasticsearch Service Amazon Kinesis Data Firehose Kibana Python

In this second part of our journey (missed Part 1? Read it here!) covering the secrets and practices

of Python’s logging, we’ll go a step further: managing multiple app instances (thus log streams),

which is a pretty normal scenario in cloud projects, to aggregate logs using Kinesis Stream,

ElasticSearch and Kibana Dashboard. Let’s go!

Go aggregate your logs!

In those cases where it comes to monitor a complex application, striving to collect distributed logs

to get an understanding of what went wrong with your code is not a clever idea.

Let’s say you have implemented a Serverless REST API through AWS API Gateway proxy-integrated

with AWS Lambda Functions, written in Python, for each of the endpoints you have defined. Given

what we already covered before, in this case logs will be presumably written to AWS CloudWatch

log streams through a StreamHandler.

But what if, instead of searching for log records inside CloudWatch log streams, you would like to

analyze them from a centralized dashboard? Well, in this case, the answer is called EKK stack

(Amazon Elasticsearch Service, Amazon Kinesis Data Firehose, and Kibana).

Before going into the details of the stack configuration, let’s introduce the role of each of the

stack’s actors. The following is just an introduction of the services used for this log, search, and

analytics solution. If you want to get more information about each of the services used, we invite

you to consult their dedicated documentation.

EKK stack’s actors

https://blog.besharp.it/en/
https://blog.besharp.it/en/tag/amazon-elasticsearch-service-en/
https://blog.besharp.it/en/tag/amazon-kinesis-data-firehose-en/
https://blog.besharp.it/en/tag/kibana-en/
https://blog.besharp.it/en/tag/python-en/
https://blog.besharp.it/en/python-logging-best-practices-and-how-to-integrate-with-kibana-dashboard-through-aws-kinesis-data-firehose-and-amazon-elasticsearch-service/

Amazon Elasticsearch Service is a managed service that allows you to deploy, operate, and scale

an Elasticsearch cluster in your AWS account. It provides a search and analytics engine that you can

exploit to monitor your application’s logs in real-time.

Amazon Elasticsearch Service has built-in integration with Kibana. Kibana is a tool that provides

you an easy to use dashboard where you can monitor and debug your application in a centralized

way.

Amazon Kinesis Data Firehose is the service that acts as a bridge between your log records

producers and your Elasticsearch cluster. Kinesis Data Firehose allows you to load streaming data

to one or more specific targets. In the solution proposed in this article, Kinesis Data Firehose is

used to stream log records produced by different and distributed application components to an

Elasticsearch cluster and to an S3 bucket, both hosted in your AWS account. The S3 bucket is used

as a backup of your log records and can be used to retrieve historical data.

For what concerns the Python ecosystem, you can rely on AWS boto3 SDK to stream local logs

directly to a Kinesis Data Firehose delivery stream. Combining the Python’s logging module with

the boto3 SDK, you can stream your logs to Kinesis Data Firehose. In the next section, we will see

how to implement a Python logging module’s handler that will load a JSON version of your log

records to a Kinesis Data Firehose delivery stream.

Extend Python’s logging module

Thanks to the extensible nature of Python’s logging module, it is possible to implement a custom

handler that meets our needs. In this section, we will illustrate how to implement a StreamHandler

that streams log data to a Kinesis Data Firehose delivery stream.

Here’s the implementation:

import boto3
import logging

class KinesisFirehoseDeliveryStreamHandler(logging.StreamHandler):

 def __init__(self):
 # By default, logging.StreamHandler uses sys.stderr if stream parameter is not
 specified
 logging.StreamHandler.__init__(self)

 self.__firehose = None
 self.__stream_buffer = []

 try:
 self.__firehose = boto3.client('firehose')
 except Exception:
 print('Firehose client initialization failed.')

 self.__delivery_stream_name = "logging-test"

 def emit(self, record):

 try:
 msg = self.format(record)

 if self.__firehose:
 self.__stream_buffer.append({
 'Data': msg.encode(encoding="UTF-8", errors="strict")
 })
 else:
 stream = self.stream
 stream.write(msg)
 stream.write(self.terminator)

 self.flush()
 except Exception:
 self.handleError(record)

 def flush(self):
 self.acquire()

 try:
 if self.__firehose and self.__stream_buffer:
 self.__firehose.put_record_batch(
 DeliveryStreamName=self.__delivery_stream_name,
 Records=self.__stream_buffer
)

 self.__stream_buffer.clear()
 except Exception as e:
 print("An error occurred during flush operation.")
 print(f"Exception: {e}")
 print(f"Stream buffer: {self.__stream_buffer}")
 finally:
 if self.stream and hasattr(self.stream, "flush"):
 self.stream.flush()

 self.release()

As you can see, and to be more specific, the provided example shows a class, the

KinesisFirehoseDeliveryStreamHandler, that inherits the behavior of the native StreamHandler class.

The StreamHandler‘s methods that were customized are emit and flush.

The emit method is responsible for invoking the format method, adding log records to the stream,

and invoking the flush method. How log data is formatted depends on the type of formatter

configured for the handler. Regardless of how it is formatted, log data will be appended to the

__stream_buffer array or, in case something went wrong during Firehose client’s initialization, to

the default stream, i.e. sys.stderr.

The flush method is responsible for streaming data directly into the Kinesis Data Firehose delivery

stream through the put_record_batch API. Once records are streamed to the Cloud, local

_stream_buffer will be cleared. The last step of the flush method consists of flushing the default

stream.

This is an illustrative yet robust implementation that you are free to copy and tailor to your specific

needs.

Once you have included the KinesisFirehoseDeliveryStreamHandler in your codebase, you’re ready

to add it to the loggers’ configuration. Let’s see how the previous dictionary configuration changes

to introduce the new handler.

config = {
 "version": 1,
 "disable_existing_loggers": False,
 "formatters": {
 "standard": {
 "format": "%(asctime)s %(name)s %(levelname)s %(message)s",
 "datefmt": "%Y-%m-%dT%H:%M:%S%z",
 },
 "json": {
 "format": "%(asctime)s %(name)s %(levelname)s %(message)s",
 "datefmt": "%Y-%m-%dT%H:%M:%S%z",
 "class": "pythonjsonlogger.jsonlogger.JsonFormatter"
 }
 },
 "handlers": {
 "standard": {
 "class": "logging.StreamHandler",
 "formatter": "json"
 },
 "kinesis": {
 "class": "KinesisFirehoseDeliveryStreamHandler.KinesisFirehoseDeliveryStream
Handler",
 "formatter": "json"
 }
 },
 "loggers": {
 "": {
 "handlers": ["standard", "kinesis"],
 "level": logging.INFO
 }
 }
}

To include the new custom handler to our configuration, it is enough to add a “kinesis” entry to the

“handlers” dictionary and another one to the root logger’s “handlers” array.

In the “handlers” dictionary’s “kinesis” entry we should specify the custom handler’s class and the

formatter used by the handler to format log records.

By adding this entry to the root logger’s “handlers” array, we are telling the root logger to write log

records both in the console and in the Kinesis Data Firehose delivery stream.

PS: the root logger is identified by “” in the “loggers” section.

That’s all with the Kinesis Data Firehose log data producer configuration. Let’s focus on the

infrastructure behind the put_record_batch API, the one used by the

KinesisFirehoseDeliveryStreamHandler to stream log records to the Cloud.

Beyond Kinesis Data Firehose’s put_record_batch API

The architecture components needed to aggregate your application’s log records and make them

available and searchable from a centralized dashboard are the following:

a Kinesis Data Firehose delivery stream;

an Amazon Elasticsearch Service cluster.

To create a Kinesis Data Firehose delivery stream, we move to the AWS management console’s

Kinesis dashboard. From the left side menu, we select Data Firehose. Once selected, we should see

a list of delivery streams present in a specific region of your AWS account. To set up a brand new

delivery stream, we’ll click on the Create delivery stream button in the top right corner of the page.

In the Create delivery stream wizard, we’ll be asked to configure the delivery stream’s source,

transformation process, destination, and other settings like the permissions needed to Kinesis Data

Firehose to load streaming data to the specified destinations.

Since we’re loading data directly from our logger through boto3 SDK, we have to choose Direct

PUT or other sources as delivery stream’s Source.

We’ll leave “transform” and “convert” options disabled since they’re not fundamental for the sake of

this article.

The third step of the wizard asks to specify the delivery stream’s destinations. Assuming that we’ve

already created an Amazon Elasticsearch Service cluster in our AWS account, we set it as our

primary destination, specifying the Elasticsearch Index name, rotation frequency, mapping type,

and retry duration, i.e. how long a failed index request should be retried.

As a secondary destination of our delivery stream, we will set up an S3 bucket. As already

mentioned before, this bucket will contain historical logs that are not subject to Elasticsearch

index’s rotation logic.

We will let S3 compression, S3 encryption, and error logging disabled and focus on the

permissions. This last section requires us to specify or create a new IAM Role with a policy that

allows Kinesis Data Firehose to stream data to the specified destinations. By clicking on Create new

we’ll be guided in the creation of an IAM Role with the required permissions policy set.

Log records streaming test

Once the delivery stream is created, we can finally test if code and architecture were correctly

integrated. The following scheme illustrates the actors in play:

From our local machine, we’re going to simulate an App component that loads log data directly to

a Kinesis Data Firehose delivery stream. For this test, we will use the config dictionary that already

includes the KinesisFirehoseDeliveryStreamHandler.

import logging.config

config = {...}

logging.config.dictConfig(config)
logger = logging.getLogger(__name__)

def test():
 try:
 raise NameError("fake NameError")
 except NameError as e:
 logger.error(e, exc_info=True)

Running this test, a new log record will be generated and written either in the console and in the

delivery stream.

Here’s the console output of the test:

{"asctime": "2020-05-11T14:44:44+0200", "name": "logging_test5", "levelname": "ERROR"
, "message": "fake NameError", "exc_info": "Traceback (most recent call last):\n File
\"/Users/ericvilla/Projects/logging-test/src/logging_test5.py\", line 42, in test\n
raise NameError(\"fake NameError\")\nNameError: fake NameError"}

Well, nothing new. What we expect in addition to the console output is to find the log record in our

Kibana console too.

To enable search and analysis of log records from our Kibana console, we need to create an Index

pattern, used by Kibana to retrieve data from specific Elasticsearch Indexes.

The name we gave to the Elasticsearch index is logging-test. Therefore, indexes will be stored as

logging-test-. Basically, to make Kibana retrieve log records from each Index that starts with

logging-test-, we should define the Index pattern logging-test-*. If our

KinesisFirehoseDeliveryStreamHandler worked as expected, the Index pattern should match a new

Index.

To filter log records by time, we can use the asctime field that our JSON formatter added to the log

record.

Once the Index pattern is created, we can finally search and analyze our application’s log records

from the Kibana console!

It is possible to further customize log records search and analysis experience to debug your

application more efficiently, adding filters, and creating dashboards.

With all being said, this concludes our coverage of Python’s logging module, best practices, and log

aggregation techniques. We hope you’ve enjoyed reading through all of this information and maybe

learned a few tricks.

Until the next article, stay safe 🙂

Read Part 1

https://blog.besharp.it/en/python-logging-best-practices-and-how-to-integrate-with-kibana-dashboard-through-aws-kinesis-data-firehose-and-amazon-elasticsearch-service/

beSharp

Dal 2011 beSharp guida le aziende italiane sul Cloud. Dalla piccola impresa

alla grande multinazionale, dal manifatturiero al terziario avanzato, aiutiamo

le realtà più all’avanguardia a realizzare progetti innovativi in campo IT.

Get in touch

beSharp.it

proud2becloud@besharp.it

Copyright © 2011-2021 by beSharp srl - P.IVA IT02415160189

https://www.besharp.it/
mailto:proud2becloud@besharp.it

