
beSharp | 6 March 2020

HOW TO CREATE AND MAINTAIN AN AWS

SERVERLESS INFRASTRUCTURE WITH

TROPOSPHERE AND CODEPIPELINE

AWS CodePipeline Infrastructure as Code (IaC) Serverless Troposphere

Serverless AWS infrastructures often provide huge advantages with respect to “classic” EC2 based

AWS infrastructures as one can easily understand considering, for example, a basic Serverless web

application developed using AWS Lambda (backend), DynamoDB (database), Cognito

(Authentication) and S3 – CloudFront (Angular single page application). An application like this will

scale automatically adapting to every level of traffic, will typically cost significantly less than an EC2

hosted application since the billing will only depend on the traffic and will have a close to zero

maintenance cost since you don’t need to update the OS, harden the instance, install security

patches and so on. So basically going serverless is a no brainer in most situations: you’ll pay less for

an application that will be able to scale faster and you’ll not be responsible anymore for the

security of the various application components: AWS will take care of that.

Figure 1: Serverless application example

However, the price you’ll pay to use the serverless paradigm is a significantly more complicated

infrastructure: while for a simple EC2 based application you’ll just create an AMI of the instance

configuration, create an Autoscaling Group an Elastic Load Balancer and you are good to go, if you

https://blog.besharp.it/en/
https://blog.besharp.it/en/tag/aws-codepipeline-en/
https://blog.besharp.it/en/tag/infrastructure-as-code-iac-en/
https://blog.besharp.it/en/tag/serverless-en/
https://blog.besharp.it/en/tag/troposphere-en/


decide to deploy the same application using the serverless paradigm you’ll end up with a plethora

of Lambda functions, an often tricky cognito configuration, sometimes an API Gateway with a lot of

Apis and the DynamoDb configuration. Differently from the code running on an EC2, which is

typically self-contained, the serverless code is usually strongly entangled with the AWS

infrastructure: if you decide, for example, to add an API endpoint to the backend running on

Lambda you’ll typically need to create a new function and an API Gateway resource to route

requests to the newly created Lambda function.

These resources quickly become impossible to manage by hand and thus the creation of an

automated CD/CI pipeline is essential to manage the infrastructure. In this setup, once a new

commit is pushed in the relevant Git repository branch the AWS CodePipeline triggers, fetches the

code from the repository (e.g. AWS Codecommit), builds the code using AWS CodeBuild preparing

the Lambda deploy zip packages and an autogenerated cloudformation template. Finally, in the

deploy pipeline step, AWS Cloudformation will deploy the template generated in the update step

which deploys the new versions of the lambdas and updates the infrastructure accordingly. 

While the CloudFormation template taking care of the deployment of the backend could also be

used to manage other infrastructure components this should be avoided in most situations. A

better way to proceed is instead to create different cloudformation Stacks each taking care of one

of the macro building blocks of our infrastructure: for example in the case of a simple serverless

infrastructure, like the one we described at the beginning of the post, one could deploy three

Cloudformation infrastructure templates: one for the frontend (S3 + CloudFront), one for the

backend (API Gateway + Lambda) and one for the other elements in the infrastructure (e.g.

DynamoDB and Cognito). Furthermore one could create a further base template to create Account

wide resources that will be used by all the templates such as the Cloudtrail configuration and the

Vpc Flow Logs configuration. This template should also take care of the creation of the

CodePipelines that will deploy the frontend, the backend, and the other needed resources. 

Creating a dedicated pipeline to deploy cloudformation templates capable of modifying only the

resource needed for the serverless application without the capability to modify anything else is

very useful for the developers who thus gain the capability to autonomously change the account

configurations in an audited way, without the need to have actual access to the AWS account.

Also, to make life easier for the developers we could use troposphere instead of plain

cloudformation (we introduced Troposphere in this article): the syntactic sugar provided by a high-

level language is always a great help with respect to plain YAML!

We end up with infrastructure like this one in the figure below:

https://blog.besharp.it/en/troposphere-a-better-way-to-build-manage-and-maintain-a-cloudformation-based-infrastructure-on-aws/


The YAML template for the Cloudformation step of the backend pipeline can be generated directly

by the developers or it can be automatically generated by one of the several frameworks such as

Serverless Framework, Chalice, and Zappa. It could also be generated directly from an AWS SAM

template: SAM is a simplified templating language specifically designed by AWS to simplify the

creation of serverless applications using Cloudformation and can be directly translated into a

Cloudformation template using the AWS CLI command AWS cloudformation package.

To conclude we presented a way to build a maintainable AWS infrastructure for serverless

applications leveraging the power of AWS CodePipeline, Troposphere and AWS CloudFormation. If

you would like to know more about this topic or want to discuss this solution further do not

hesitate to reach out to us in the comments section or directly by mail!

https://www.besharp.it/en/contact-us/


beSharp

Dal 2011 beSharp guida le aziende italiane sul Cloud. Dalla piccola impresa

alla grande multinazionale, dal manifatturiero al terziario avanzato, aiutiamo

le realtà più all’avanguardia a realizzare progetti innovativi in campo IT.

Get in touch

beSharp.it

proud2becloud@besharp.it

Copyright © 2011-2021 by beSharp srl - P.IVA IT02415160189

https://www.besharp.it/
mailto:proud2becloud@besharp.it

