
beSharp | 2 October 2020

GITLAB VS AWS CODEPIPELINE: THE ULTIMATE

BATTLE ROYAL!

AWS Cloud Formation AWS CodeBuild AWS CodeCommit AWS CodeDeploy

AWS CodePipeline CI/CD

GitLab has become a widely used DevOps tool as it packs a lot of features into a single service. It

can be deployed on-premise, or you can use the SaaS version.

The free tier is enough for common tasks like maintaining a codebase, running pipelines and

managing project information. Amazon Web Services offers a suite of services (AWS CodeCommit,

AWS CodeBuild, AWS CodePipeline) to implement CI/CD best practices with a pay-as-you-go

pricing model.

It’s never easy to choose the perfect set of tools to use when planning a new business or to migrate

legacy applications to the cloud. Fear not, dear developers: this article is going to clear things out

through an ultimate Royal Battle! Since we’re talking about cloud environments, we need to find a

common playfield to start the fight: for an equal challenge, we choose the AWS Well-Architected

Framework, the framework designed by AWS to help you design maintainable, secure, resilient,

efficient, and cost-effective applications and architectures

Based on 5 pillars – Operational Excellence, Security, Reliability, Performance Efficiency, and Cost

Optimization – it does not involve any AWS service in particular, so it can be used as a design

reference to build any service or infrastructure.

Let’s welcome today’s fighters: on one side GitLab. On the other side, AWS CodePipeline is

warming up!

Rules of the game

Let’s begin an hypothetical match between GitLab and AWS Codepipeline.

Each pillar will be used as a round; scores will be based on the design principles of the pillar.

https://blog.besharp.it/en/
https://blog.besharp.it/en/tag/aws-cloud%e2%80%8bformation-en/
https://blog.besharp.it/en/tag/aws-codebuild-en/
https://blog.besharp.it/en/tag/aws-codecommit-en/
https://blog.besharp.it/en/tag/aws-codedeploy-en/
https://blog.besharp.it/en/tag/aws-codepipeline-en/
https://blog.besharp.it/en/tag/ci-cd-en/
https://aws.amazon.com/blogs/apn/the-5-pillars-of-the-aws-well-architected-framework/

Round 1: Operational Excellence

For this game, points will be defined based on the following principles:

Perform operations as code

Make frequent, small, reversible changes

Refine operations procedures frequently

Anticipate failure

Learn from all operational failures

GitLab and CodePipeline can define pipelines for various tasks, build projects and deploy them

using a yaml template. It is possible to define different stages and execution steps for each stage.

We’ll use a sample

GitLab at serve:

image: python:latest

variables:
 PIP_CACHE_DIR: "$CI_PROJECT_DIR/.cache/pip"

test:
 script:
 - python setup.py test
 - pip install tox flake8 # you can also use tox
 - tox -e py36,flake8

run:
 script:
 - python setup.py bdist_wheel
 - pip install dist/*
 artifacts:
 paths:
 - dist/*.whl

And now CodePipeline turn

version: 0.2
env:
 variables: PIP_CACHE_DIR: "$CI_PROJECT_DIR/.cache/pip"
phases:
 test:
 - python setup.py test
 - pip install tox flake8 # you can also use tox
 - tox -e py36,flake8

 run:
 - python setup.py bdist_wheel
 - pip install dist/*

https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Python.gitlab-ci.yml

 artifacts:
 files:
 - dist/*.whl

GitLab allows you to define the image used for building, while CodePipeline allows you to define

the image in pipeline definition, not in build steps. The syntax is quite similar and very clear in both

cases and the deriving flexibility is considerable.

It’s 1 – 1.

Anyway, CodePipeline allows you to deploy entire infrastructure stacks using CloudFormation, too.

This means: Continuous Delivery for entire infrastructures!

CodePipeline takes the lead. It’s 2 – 1!

Round 2: Security

For this game, points will be defined based on the following principles:

Enable traceability

Apply security at all layers

Automate security best practices

Protect data in transit and at rest

Keep not authorized people away from data

Prepare for security events

GitLab offers authentication mechanisms that can leverage other IdP and federations like Active

Directory and SAML and you can take advantage of centralized user management if you plan your

configuration carefully. Anyway, if you also need SAML SSO for groups, you have to opt for the paid

tier.

AWS CodePipeline uses the same authentication and authorization layer of AWS: it features Active

Directory, SAML, and… SAML SSO for groups. Given that not every authentication feature is

available on GitLab’s free tier, AWS takes the lead.

Let’s speak about traceability and keeping people away from data: the audit log is available only on

GitLab paid plans while CloudTrail is included and configured for every AWS service in your

account.

AWS scores: it’s 3 – 1.

The hardest part to deal with for GitLab comes with open issues and discussions on GitLab about

runner security and about data encryption at rest (cache and artifacts).

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/continuous-delivery-codepipeline-basic-walkthrough.html
https://gitlab.com/gitlab-org/gitlab-runner/-/issues/25351
https://gitlab.com/gitlab-org/gitlab-runner/-/issues/3232

If you need to interact with AWS services to deploy your application, you’ll need to give the runner-

manager a role with the right permissions. If you need to deploy multiple applications that run on

different services, you’ll need to provide additional permissions to your runner or to spawn multiple

runners, giving them the minimum access required (note that, by doing so, the number of the

resources will increase, along with costs)

This round is won by AWS services, as every service provides encryption at rest and in transit for

data. Also, IAM roles allow you to avoid using tokens, access keys, and other vulnerable

authentication mechanisms for services.

CodePipeline scores again and it’s 4 – 1.

Round 3: Reliability

For this game, points will be defined based on the following principles:

Automatically recover from failure

Test recovery procedures

Scale horizontally to increase aggregate workload availability

Stop guessing capacity

Automatic management of changes

Before diving into this round, it is necessary to keep in mind that in this case, a lot depends on your

expectations when implementing your build environment in both services.

Both GitLab and AWS CodePipeline are characterized by horizontal scalability, they both automate

changes, and don’t require any intervention for advanced capacity planning (except for using a

single big on-premise runner for GitLab).

They both score: it’s a 5 – 2.

In terms of flexibility in scaling, GitLab implements a plugin system, and you can also use custom

executors. Definitely an extra gear: nice shot, GitLab: 5 – 3.

AWS CodePipeline allows you to use a multi-az deployment. This ensures, for example, your build

can run on the other 2 availability zones in case of failure in eu-west-1-a.

Note that if you are using GitLab’s EC2 Autoscaling plugin, multi-az deployment is not

implemented. Here’s the sample config taken from this sample.

[runners.machine]
 IdleCount = 1
 IdleTime = 1800
 MaxBuilds = 10
 MachineDriver = "amazonec2"
 MachineName = "gitlab-docker-machine-%s"

https://docs.gitlab.com/runner/configuration/runner_autoscale_aws/

 MachineOptions = [
 "amazonec2-access-key=XXXX",
 "amazonec2-secret-key=XXXX",
 "amazonec2-region=us-central-1",
 "amazonec2-vpc-id=vpc-xxxxx",
 "amazonec2-subnet-id=subnet-xxxxx",
 "amazonec2-zone=x",
 "amazonec2-use-private-address=true",
 "amazonec2-tags=runner-manager-name,gitlab-aws-autoscaler,gitlab,true,gitlab-run
ner-autoscale,true",
 "amazonec2-security-group=xxxxx",
 "amazonec2-instance-type=m4.2xlarge",
]

As you can see, it is possible to set a single subnet only and a single Availability Zone. With this

configuration, your build will fail in case of failure in the chosen zone. AWS gets the point. It’s 6 – 3.

Note that is possible to implement a custom executor to increase reliability, but you’ll need to

develop it and test it on your own with a considerable waste of time.

Let’s continue with the two last two rounds.

Round 4: Performance Efficiency

For this game, points will be defined based on the following principles:

Democratizing advanced technologies

Going global in minutes

Using serverless architectures

Experimenting more often

Conoscere e tenere in considerazione l’infrastruttura sottostante (qualche specifica qui).

Even if GitLab and CodePipeline have a lot in common, there’s a little more flexibility on the GitLab

side, as it supports a lot of different deployments and configurations.

One point to GitLab: 6 – 4.

On the other side, CodePipeline offers better support for serverless builds, in comparison with the

limited GitLab support for some serverless approaches. For example, you can’t use Docker in

Docker leveraging on the same Docker socket on the fargate custom executor.

Sembra che su questo argomento ci sia un pareggio! Entrambi i servizi guadagnano un punto: 7 – 4

per CodePipeline.

Round 5: Cost Optimization

For this game, points will be defined based on the following principles:

https://dzone.com/articles/mechanical-sympathy

Implement cloud financial management

Adopt a consumption model

Measure overall efficiency

Stop spending money on undifferentiated heavy lifting

Analyze and attribute expenditure

Let’s analyze pricing models: GitLab is based on a per-user pricing model, while AWS users are

free. CodeBuild minutes are priced based on the time you use resources for a build. If you manage

to use a general1.small (2 cores and 3gb of RAM), you’ll end up spending 5 dollars for 1.000

minutes.

With GitLab shared runners, instead, you can purchase 1.000 minutes of shared runners for 10$ (the

first 2.000 minutes are free).

If you don’t want to use GitLab’s shared runners, you can use AWS Auto Scaling for builds, but keep

in mind that you’ll need an EC2 instance for the runner manager and other instances to allow your

builds to scale. Other possibilities are purchasing reserved instances or using spot instances if your

business allows you to do it.

For this round, no doubts for the winner: AWS CodePipeline gets the last point, as it offers a more

pre-built and out-of-the-box and integrated solution.

Podium and conclusions

Our friendly fight between 2 of the most widely adopted services has ended. With a score of 8 – 4,

we are welcoming AWS CodePipeline on the top step of the podium!

Will it keep its supremacy?

Don’t get us wrong: GitLab remains an excellent service with great features for teams and top user

experience for developers and under specific conditions, it is still the best choice, according to

specific use cases.

In some other cases, choosing isn’t a good idea at all… Depending on the needs, mixing both of the

services can be a winning choice… but this is a plain and simple spoiler for the next series of

articles… 🙂

https://aws.amazon.com/codebuild/pricing/

Keep warm for the next fight. Till then, code secure and see you in 14 days on #Proud2beCloud!

beSharp

Dal 2011 beSharp guida le aziende italiane sul Cloud. Dalla piccola impresa

alla grande multinazionale, dal manifatturiero al terziario avanzato, aiutiamo

le realtà più all’avanguardia a realizzare progetti innovativi in campo IT.

Get in touch

beSharp.it

proud2becloud@besharp.it

Copyright © 2011-2021 by beSharp srl - P.IVA IT02415160189

https://www.besharp.it/
mailto:proud2becloud@besharp.it

