
beSharp | 4 September 2020

BUILD YOUR OWN MOBILE FILE HOSTING

APPLICATION WITH FLUTTER, AMPLIFY, AND AWS.

Android Studio AWS Amplify AWS Identity and Access Management (IAM)

AWS Lambda CI/CD File hosting How-to Mobile Serverless

Nowadays Flutter is becoming more and more recognized as a viable solution for making mobile

cross-platform applications. Also, AWS Amplify is rapidly gaining the attention of the developer

community as it makes it incredibly simple to setup applications without worrying about backend

infrastructure, as the library does that for you.

Recently these two frameworks joined forces and the first release of Amplify for Flutter has been

put online for developers to test out, with support for Amazon Cognito, AWS S3, and Pinpoint for

logging.

Being eager to try it out, we created a Proof-of-Concept to show how well these libraries work

together. Following we present how to develop an AWS S3 powered dropbox-like application with

Login capabilities for mobile devices.

As a bonus, we also propose a simple configuration for managing your CI/CD pipeline using Travis

CI.

The project can be created step by step following the guidelines provided or by directly

downloading the entire solution from our Github repository.

Let’s get started!

Setup your environment
In order to start developing applications in Flutter, some preliminary steps are required. You can

follow the instructions provided below to set up your environment with all the required tools.

https://blog.besharp.it/en/
https://blog.besharp.it/en/tag/android-studio-en/
https://blog.besharp.it/en/tag/aws-amplify-en/
https://blog.besharp.it/en/tag/aws-identity-and-access-management-iam-en/
https://blog.besharp.it/en/tag/aws-lambda-en/
https://blog.besharp.it/en/tag/ci-cd-en/
https://blog.besharp.it/en/tag/file-hosting-en/
https://blog.besharp.it/en/tag/how-to-en/
https://blog.besharp.it/en/tag/mobile-en/
https://blog.besharp.it/en/tag/serverless-en/
https://github.com/besharpsrl/flutter-amplify-demo

AWS CLI with a valid account for using Amplify

Before doing anything else be sure to create an appropriate account on AWS. Amplify needs access

to the following cloud resources:

AppSync

API Gateway

CloudFormation

CloudFront

Cognito

DynamoDB

IAM

Lambda

S3

Amplify.

Therefore here is a simple AWS Policy with the set of rules you need in order to run Amplify:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "appsync:*",
 "apigateway:POST",
 "apigateway:DELETE",
 "apigateway:PATCH",
 "apigateway:PUT",
 "cloudformation:CreateStack",
 "cloudformation:CreateStackSet",
 "cloudformation:DeleteStack",
 "cloudformation:DeleteStackSet",
 "cloudformation:DescribeStackEvents",
 "cloudformation:DescribeStackResource",
 "cloudformation:DescribeStackResources",
 "cloudformation:DescribeStackSet",
 "cloudformation:DescribeStackSetOperation",
 "cloudformation:DescribeStacks",
 "cloudformation:UpdateStack",
 "cloudformation:UpdateStackSet",
 "cloudfront:CreateCloudFrontOriginAccessIdentity",
 "cloudfront:CreateDistribution",
 "cloudfront:DeleteCloudFrontOriginAccessIdentity",
 "cloudfront:DeleteDistribution",
 "cloudfront:GetCloudFrontOriginAccessIdentity",
 "cloudfront:GetCloudFrontOriginAccessIdentityConfig",
 "cloudfront:GetDistribution",
 "cloudfront:GetDistributionConfig",
 "cloudfront:TagResource",

 "cloudfront:UntagResource",
 "cloudfront:UpdateCloudFrontOriginAccessIdentity",
 "cloudfront:UpdateDistribution",
 "cognito-identity:CreateIdentityPool",
 "cognito-identity:DeleteIdentityPool",
 "cognito-identity:DescribeIdentity",
 "cognito-identity:DescribeIdentityPool",
 "cognito-identity:SetIdentityPoolRoles",
 "cognito-identity:UpdateIdentityPool",
 "cognito-idp:CreateUserPool",
 "cognito-idp:CreateUserPoolClient",
 "cognito-idp:DeleteUserPool",
 "cognito-idp:DeleteUserPoolClient",
 "cognito-idp:DescribeUserPool",
 "cognito-idp:UpdateUserPool",
 "cognito-idp:UpdateUserPoolClient",
 "dynamodb:CreateTable",
 "dynamodb:DeleteItem",
 "dynamodb:DeleteTable",
 "dynamodb:DescribeTable",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:UpdateTable",
 "iam:CreateRole",
 "iam:DeleteRole",
 "iam:DeleteRolePolicy",
 "iam:GetRole",
 "iam:GetUser",
 "iam:PassRole",
 "iam:PutRolePolicy",
 "iam:UpdateRole",
 "lambda:AddPermission",
 "lambda:CreateFunction",
 "lambda:DeleteFunction",
 "lambda:GetFunction",
 "lambda:GetFunctionConfiguration",
 "lambda:InvokeAsync",
 "lambda:InvokeFunction",
 "lambda:RemovePermission",
 "lambda:UpdateFunctionCode",
 "lambda:UpdateFunctionConfiguration",
 "s3:*",
 "amplify:*"
],
 "Resource": "*"
 }
]
}

Attach the policy to a user with Programmatic Access, take note of the access and secret key. If

you are not confident creating an AWS Policy on your own, check this link or choose one of the

many guides available online.

A side note: it is advisable to remove the user as soon as Amplify has completed creating all the

resources, to avoid leaving potential security breaches.

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-and-attach-iam-policy.html

The next step is to configure AWS CLI on your computer. Download it choosing the appropriate

installer for your OS. Install it and then in your terminal of choice type: aws configure.

Use the Access and Secret keys you’ve taken note of when prompted and the rest leave it as

default.

With all this information filled up, you are now able to install Flutter and Amplify correctly.

Install Flutter and configure your first project

We managed to install and launch Flutter without any difficulty by following this guide. We chose

MacOS and followed the instructions, setting up everything for working with Android Studio, but

you can use IntelliJ as well. After installing the framework, we connect a test phone and run flutter

devices in the terminal to verify that it’s found correctly.

Create a new Flutter project from the Android Studio menu and select Flutter Application. Compile

the required options and let the IDE create the boilerplate for you.

Select your phone and main.dart file and press play like in figure:

After compiling you’ll see the demo app working. Now let’s continue by configuring AWS Amplify.

Configuring Amplify for Flutter

Amplify has now released a specific version of its library to work directly with Flutter, written in

Dart, and modularized so you can download and use only the module you need.

We followed the official Amplify guide for Flutter:

This guide helps configuring Amplify and complete all preliminary steps (installing the library,

configuring the user, etc.) in order to do an amplify push in the terminal to obtain

amplifyconfiguration.dart. This file is fundamental as it contains all the sensitive information and

the configuration for your Amplify solution and also all the data we need when adding Amplify

plugins to the Flutter solution. Keep it always safe!

A couple of notes about Amplify Auth

When installing amplify with the intention of using Cognito SignIn and SignUp procedures pay

attention to these details to avoid having unwanted behaviors:

Launch amplify init and amplify configure inside the flutter project directory. If everything is ok,

amplifyconfiguration.dart will be created inside the lib directory.

Be sure to configure both analytics and auth with amplify add analytics and amplify add auth.

You’ll need both to be sure to have everything configured correctly.

https://aws.amazon.com/cli/
https://flutter.dev/docs/get-started/install
https://developer.android.com/studio
https://dart.dev/
https://docs.amplify.aws/start/getting-started/setup/q/integration/flutter

Use flutter clean in the terminal and push to your device a clean .apk to be sure that all the

updates are seen correctly.

To do a preliminary check we tried their demo on top of our existing project to be sure that

everything was defined as it should. After that, we started developing our Proof-of-Concept!

Let’s build our dropbox-like mobile app!

First thing first: when we first tried Flutter and Dart, we found that it is very similar to how

ReactNative works, in terms of structuring applications, that is pretty much no structure at all 😅 .

Bring order to Flutter

In order to keep the project as structured as possible, we wrote our project with Angular in mind:

we opted to divide code by functionalities following directives of Domain Driven Design. Removing

the UI part of the dart files from the main widgets and moving it in some specialized classes to

keep code more DRY and Clean. Let’s see it with a simplified example:

Like for Angular, we defined a package for a Domain, in this case Auth. Inside we have defined a

package for a layout file and one for every “component” (login and signup). For every component,

we defined 2 files: one for the actual logic and another one suffixed with .ui to contain the graphical

composition.

Let’s check some code; inside login.dart we have:

// Call this when drawing component graphics
@override
Widget build(BuildContext context) {
 return loginUi(this);
}

https://airbrake.io/blog/software-design/domain-driven-design

We can see that there is no graphic here, instead, we call the loginUi class passing our

State<Login> class LoginState with this. Now let’s see login.ui.dart:

UiBuilder loginUi = (state) => Container(
 child: Stack(
 children: [
 ...
]
)
);

We declared our “graphical file” as UiBuilder<LoginState> loginUi = (state) => Container(child: …

where UiBuilder is another helper we defined (and we’ll see it in a moment) and that “cast” to

LoginState passing the state variable to the method. With this approach, we can build the graphics

separately from the logic file with also having access to all the variables we declare in login.dart

inside the LoginState class! We have also declared for this purpose a core package which contains

the UiBuilder implementation:

Let’s see inside ui-builder.dart:

import 'package:flutter/material.dart';
typedef UiBuilder = Widget Function(T context);

Nothing more than defining a new type (UiBuilder) which refers to a function that returns a Widget

(for the graphics) with a context that depends explicitly on the generic T, with this we have created

a clean way to separate logic from graphics! Just for completeness here is the layout file

login_layout.dart:

import 'package:flutter/material.dart';

class LoginLayout extends StatefulWidget {

 final Widget child;

 LoginLayout({ this.child, });

 }

class LoginLayoutState extends State {
 @override
 Widget build(BuildContext context) {

 return Container(
…
 appBar: null,
 body:
...
 this.widget.child
...
);
 }
}

Here the 2 important elements are the constructor LoginLayout({ this.child, }); where we ask for a

 final Widget child; (The Login class), then we inject this variable into the body of the layout with

this.widget.child to include its graphics. Finally, when we want to show this component with its

layout we can use LoginLayout(child: Login()).

Project structure

We decided to make an application where a user can sign up in order to gain access to a personal

space on S3 to upload and download files; therefore we have defined 2 domains: Authentication

and S3 management.

The first one contains login and signup components, while the second one is a component that

manages upload, download, delete, and list actions over our application’s bucket.

Building the Login and Signup widgets and

connecting them with Cognito

At first, we wanted to build the login and signup features to let users register and then log in to use

the application. As a prerequisite, we followed the amplify guide about analytics first and then for

authorization as mentioned before.

Inside the project’s directory we simply executed:

amplify add analytics

With the default parameters. After that, we configured login and signup capabilities with

amplify add auth

Due to the nature of the POC we left the default parameters like below:

? Do you want to use the default authentication and security configuration?
 `Default configuration`
? How do you want users to be able to sign in?
 `Username`

? Do you want to configure advanced settings?
 `No, I am done.`

Then we pushed the configuration online using the user we prepared in the preliminary phase with:

amplify push

In this phase, it is advisable to run a flutter clean and a redeploy of the application on the phone to

be sure that the configuration is updated on the device.

Having the configuration pushed online means that we have an S3 bucket with the amplify

application, a user pool, and an identity pool on AWS Cognito. Those can be left untouched as

they are.

Now for the code part, we’ll show you the most interesting pieces, given that the entire project is

available on our Github repository.

Login

First of all we use this piece of code to identify the login form:

final formKey = GlobalKey();

This is necessary so we can validate all the form controls with a single line of code:

// Validate the form with this line...
if (formKey.currentState.validate()) {

To access form controls’ data we define objects of type TextEditingController like these:

final usernameController = TextEditingController();
final passwordController = TextEditingController();

To log the user in we use the standard Amplify’s method as per documentation:

SignInResult res = await Amplify.Auth.signIn(
 username: usernameController.text.trim(),
 password: passwordController.text.trim(),
);

And to navigate to the signup or the s3 page we use:

Navigator.push(context, MaterialPageRoute(builder: (context) => LoginLayout(child: Si
gnup())));
Navigator.push(context, MaterialPageRoute(builder: (context) => S3ViewerLayout(child:
S3Viewer())));

As we said before we pass the correct layout to the MaterialPageRoute specifying the component

we want. Also in order to notify the graphic that the state of the application is changed we use

Flutter’s method setState:

setState(() {
 loggingIn = false;
});

For the Ui part, let’s take a look at login.ui.dart; we assign the formKey to the Form object:

child: Form(
 key: state.formKey,

We have also defined two shared components to help standardize the graphics around the

application: roundedTextFormField and roundedRectButton; they are defined in a shared

namespace. Just for the sake of curiosity let’s see one of these:

import 'package:flutter/material.dart';

Widget roundedTextFormField(TextEditingController controller, String hintText, Color m
ainColor, Color backColor, Function validation, obscured) {
 return Padding(
 padding: EdgeInsets.only(bottom: 10, left: 50, right: 50),
 child: TextFormField(
 obscureText: obscured,
 controller: controller,
 validator: (value) => validation(value),
 style: TextStyle(color: mainColor),
 decoration: new InputDecoration(
 border: new OutlineInputBorder(borderRadius: BorderRadius.circular(100.0
),),
 filled: true,
 hintStyle: new TextStyle(color: mainColor.withOpacity(0.5)),
 hintText: hintText,
 fillColor: backColor
),
)
);
}

In Dart, we code similar to Javascript in the sense that we just need to define a widget and import

it in the file where we need to use it, just like we did for the roundedTextFormField above.

Signup

For the Signup process, we applied the default parameters of Amplify’s configuration wizard and

we ask for email, username (that will be used to identify the personal space in the S3 bucket), and

a valid password. After the signup process, there is the confirmation process. A mail will be sent to

the user with a confirmation code to insert in order to complete the registration.

Let’s see the code inside signup.dart. There are two main methods: signupNewUser and

confirmNewUser; the approach is similar to the login method:

if (formKey.currentState.validate()) {

We define a formKey and we use it for the page’s form, then we use Amplify to signup:

// Create a map attributes dictionary for holding extra information for the user
Map userAttributes = {
 'email': emailController.text.trim(),
 // additional attributes as needed: we set email because is a common way
 // to define a unique value to use for S3 folders
};

// Signup using Amplify with Cognito
SignUpResult res = await Amplify.Auth.signUp(
 username: usernameController.text.trim(),
 password: passwordController.text.trim(),
 options: CognitoSignUpOptions(
 userAttributes: userAttributes
)
);

Then we change the state of the application with setState, altering the visibility of different

components in the signup.ui.dart file using the Visibility Widget:

Visibility(
 visible: state.registering,
…

To keep the code clean we also use setState in signup.dart to define which widget we want to see:

signup or confirm.

@override
Widget build(BuildContext context) {
 return this.isSignUpComplete ? confirmUi(this) : signupUi(this);
}

Basically we are using the state variable isSignUpComplete to decide which widget we want to

show (both in signup.ui.dart).

To complete the registration we use:

SignUpResult res = await Amplify.Auth.confirmSignUp(
 username: usernameController.text.trim(),

 confirmationCode: confirmController.text.trim()
);

After that, we send the user back to the login page.

Building the S3 Manager widget and

connecting it with S3

The S3 manager widget has four main purposes:

Listing online files

Uploading a new file

Downloading an online file

Deleting an online file

Let’s take a look at what we have done to achieve that.

// Storage Item list
List items = [];

// Check if the app is uploading something
bool isUploading = false;

// Check if a file is being removed
bool isRemoving = false;

// Check if a file is being downloaded
bool isDownloading = false;

// Check if the app is retrieving the list of files
bool isListing = false;

We have defined an array to store the listed items, and four boolean values to manage the changing

of application state for every action: this way is very easy to use setState method to block user

interaction on buttons during the execution of long running tasks. At the init state of the

component we run listFiles(), which request our authenticated user:

AuthUser user = await Core.getUser();

And list all files with Amplify using default options:

ListResult res = await Amplify.Storage.list();

Before showing the files we filter them by user to prevent listing unwanted ones:

items = res.items.where((e) => e.key.split('/').first.contains(user.username)).toList
();

To upload a file we need to recover it from the phone and to do it the easy way we have used the

File Picker library which also handles permissions:

import 'package:file_picker/file_picker.dart';

File picker let us retrieve the file, and with the connected user we can create a unique key for the

upload:

// We put this outside of try to avoid logging user cancel
File file = await FilePicker.getFile();
AuthUser user = await Core.getUser();

try {
 if(file.existsSync()) {

 setState(() {
 isUploading = true;
 });

 final key = user.username + '/' + file.path.split('/').last;

 // Upload the file
 UploadFileResult result = await Amplify.Storage.uploadFile(
 key: key,
 local: file
);

...

To remove a file we simply call the Amplify method passing the item key:

RemoveResult res = await Amplify.Storage.remove(
 key: item.key,
);

Finally to download a file we need to do two things: check user’s permissions as new android

versions require them at runtime:

import 'package:permission_handler/permission_handler.dart';

Future checkPermission() async {
 final status = await Permission.storage.status;
 if (status != PermissionStatus.granted) {
 final result = await Permission.storage.request();
 if (result == PermissionStatus.granted) {
 return true;
 }
 } else {

 return true;
 }
 return false;
}

And actually download the file:

var dir = await DownloadsPathProvider.downloadsDirectory;
var url = await Amplify.Storage.getUrl(key: item.key, options: GetUrlOptions(expires:
3600));

await checkPermission();

final taskId = await FlutterDownloader.enqueue(
 url: url.url,
 fileName: item.key.split('/').last,
 savedDir: dir.path,
 showNotification: true, // show download progress in status bar (for Android)
 openFileFromNotification: true, // click on notification to open downloaded file (f
or Android)
);

As a side note, we had difficulties downloading the actual file with Amplify’s download method so

we managed to do it with a combination of Amplify’s getUrl and FlutterDownloader.enqueue.

For the design part just take a look at the s3viewer.ui.dart file, nothing fancy there.

Building the Core file which contains some

utilities

The core component just contains some static methods that serve as utilities all around the

application as well as some validation functions for the forms. Let’s have a quick look at some

examples:

// Static method to get the current logged user
static Future getUser() async {
 return Amplify.Auth.getCurrentUser();
}

The previous one for returning the Amplify user, and a simple email validator below:

static emailValidator(value) {
 if (value.isEmpty) {
 return 'Please fill the field';
 }
 if (!RegExp(r"^[a-zA-Z0-9.a-zA-Z0-9.!#$%&'*+-/=?^_`{|}~]+@[a-zA-Z0-9]+\.[a-zA-Z]+").h
asMatch(value)) {
 return 'Please insert a valid email';
 }

 return null;
}

It receives a string value and returns an error message or null if the input is valid; this can be passed

to a TextFormField for the validator property (please refer to the source code for completeness).

Testing the application on a real device

To develop the application directly on a real device, Flutter allows you to deploy and test your code

on it with hot reload functionality. There are two ways to do this: 1) Press play on the top-right

corner of Android Studio like in figure:

2) first type in your terminal flutter devices and take note of your device id. Then you can call in the

terminal flutter run -d <DEVICE_ID> -t ./lib/main.dart, being in the project directory.

When in testing mode a debug flag will be automatically put on top of your appbar, and by

pressing r in the terminal you can force the hot reload functionality.

To complete the build preliminaries you need to do these two steps:

1) in the android directory go to app/src/build.gradle and verify that you have the following values

for the SDK:

minSdkVersion 23
targetSdkVersion 29
compiledSdkVersion 29

This is to avoid building problems with the libraries we have in the demo.

2) in the android directory go to app/src/main/AndroidManifest.xml and add these permissions:

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

Directly inside the manifest tag and android:requestLegacyExternalStorage=“true” as an attribute

of the application tag.

Finally, let’s see our app in action:

New user registration

Login and images loading

files upload and download

Using Travis CI to perform CI/CD

Travis CI is a CI/CD service that you can use to test, build and deploy your application, and it can be

easily integrated with your GitHub repository, in our case a public one. For the sake of this article,

we will focus on how to automate the Android APK generation from the code pushed on our public

GitHub repository through Travis CI.

Once you’ve signed up yourself to Travis CI – we signed up through our GitHub account – you need

to activate your repository, in order to make Git push events to trigger the pipeline under specific

conditions defined in Travis CI configuration file.

From the Travis CI console, move to the Settings section that is listed in the menu that appears

when you click on your avatar. Now, from the left sidebar select the organization that contains the

repository you want to integrate with Travis CI. From the list of repositories associated with the

given organization, click the toggle that corresponds to the repository that should be activated.

Once you’ve activated the repository you can focus on the Travis CI configuration file, the one that

describes the CI/CD process, in our case how to build the Android APK.

Create a file named .travis.yml in the root of the project’s folder.

In the first part of the .travis.yml file we will define the operating system on which the pipeline

should run, the supported language and the JDK that is needed for build purposes.

language: android
os: linux
dist: xenial
jdk: oraclejdk8

Specifying android as the supported language makes the CI/CD environment implicitly include the

Android SDK, needed to build the solution. Xenial is an Ubuntu Distro that corresponds to the 16.04

version. oraclejdk8 should be configured as SDK in order to use the sdkmanager, a command line

tool used to install Android’s platform and build tools. After this initial block we have to define all

the Android’s main modules that are needed throughout the build process.

android:
 components:
 - tools
 - platform-tools
 - build-tools-28.0.3
 - android-29

The third main block regards the installation of Android’s platform and build tools, and the

installation of Flutter inside the CI/CD environment.

install:
 - yes | sdkmanager "platform-tools" "platforms;android-29" "build-tools;28.0.3"
 - git clone https://github.com/flutter/flutter.git -b flutter-1.22-candidate.9

Note: the -b option allows you to specify the exact version of Flutter you’re gonna clone in the

CI/CD environment. To have an overview of all flutter branches, visit this page. Flutter-1.22-

candidate.9 branch refers to version 1.22.0-9.0.pre.

Let’s now focus on the script block of the .travis.yml configuration file. Here we define the

command needed to build our Android APK.

script:
 - ./flutter/bin/flutter build apk --debug

As you can notice, we are using the –-debug flag. As described here, in debug mode, the app is set

up for debugging on the physical device, emulator, or simulator.

https://github.com/flutter/flutter/branches/all
https://flutter.dev/docs/testing/build-modes#debug

Once the artifact – i.e. the Android APK – is available, it has to be released in the form of GitHub

release. To automate the release creation, you need to add the following configuration block.

deploy:
 provider: releases
 api_key: $API_KEY
 file: build/app/outputs/apk/debug/app-debug.apk
 skip_cleanup: true
 name: $TRAVIS_TAG
 on:
 tags: true

This configuration makes Travis CI create a release only if a tag is present in the last commit. Using

the TRAVIS_TAG environment variable, we are able to define the name that we want to assign to

the release.

To add a file to the release, you have to specify its path after the file key.

Last important thing to specify is the api_key, i.e. your GitHub personal access token, needed for

authentication.

You should finally be able to browse your newly created release in your GitHub repository.

This is the entire .travis.yml configuration file:

language: android
os: linux
dist: xenial
jdk: oraclejdk8
android:
 components:
 - tools
 - platform-tools
 - build-tools-28.0.3
 - android-29
install:
 - yes | sdkmanager "platform-tools" "platforms;android-29" "build-tools;28.0.3"
 - git clone https://github.com/flutter/flutter.git -b flutter-1.22-candidate.9
script:
 - ./flutter/bin/flutter build apk --debug
deploy:
 provider: releases
 api_key: $API_KEY
 file: build/app/outputs/apk/debug/app-debug.apk
 skip_cleanup: true
 name: $TRAVIS_TAG
 on:
 tags: true

References

Here we present all the references we used to build this solution:

https://flutter.dev/docs/get-started/install/macos

https://docs.amplify.aws/start/getting-started/setup/q/integration/flutter

https://docs.amplify.aws/lib/auth/getting-started/q/platform/flutter#configure-auth-category

https://aws.amazon.com/cli/

https://dart.dev/docs

https://github.com/git-touch/file-icon

https://pub.dev/packages/file_picker

https://pub.dev/packages/fluttertoast

https://github.com/fluttercommunity/flutter_downloader

https://pub.dev/packages/permission_handler

And here is our repository for downloading and testing the demo application:

https://github.com/besharpsrl/flutter-amplify-demo

Note: at the time of writing it seems that Amplify for Flutter can’t compile for release mode, therefore the

app can be tried only in debug mode.

Conclusions

In this article we have seen how simple it is to create a mobile application with Flutter using AWS

Amplify to cover all the complexity of managing AWS infrastructure for us and for keeping data

synchronized between our app and the Cloud. At the moment of this article only 3 services have

been ported to Flutter: Cognito, S3 and Pinpoint, but seeing how well this is working, we sincerely

hope to see more and more updates to this library.

As a final note, feel free to refer to our simple demo to expand and explore all the possibilities of

this solution. If you have any questions or ideas we encourage you to reach and discuss with us!

Until our next article, thank you for taking your time to read and see you again! 😉

#Proud2beCloud

https://flutter.dev/docs/get-started/install/macos
https://docs.amplify.aws/start/getting-started/setup/q/integration/flutter
https://docs.amplify.aws/lib/auth/getting-started/q/platform/flutter#configure-auth-category
https://aws.amazon.com/cli/
https://dart.dev/docs
https://github.com/git-touch/file-icon
https://pub.dev/packages/file_picker
https://pub.dev/packages/fluttertoast
https://github.com/fluttercommunity/flutter_downloader
https://pub.dev/packages/permission_handler
https://github.com/besharpsrl/flutter-amplify-demo

beSharp

Dal 2011 beSharp guida le aziende italiane sul Cloud. Dalla piccola impresa

alla grande multinazionale, dal manifatturiero al terziario avanzato, aiutiamo

le realtà più all’avanguardia a realizzare progetti innovativi in campo IT.

Get in touch

beSharp.it

proud2becloud@besharp.it

Copyright © 2011-2021 by beSharp srl - P.IVA IT02415160189

https://www.besharp.it/
mailto:proud2becloud@besharp.it

