we make IT run.

AMAZON COGNITO: AUTHENTICATION MANAGED BY
MEANS OF SINGLE SIGN-ON

Amazon APl Gateway Multi-Factor Authentication Single-Sign-On (SS0O)

beSharp | 23 August 2019

One of the most recurring features in web and mobile applications is certainly user authentication;
being able to off-load the responsibilities related to user authentication management greatly

increases the resilience of the solutions implemented and the speed of development.

The use of managed services allows the development team to automate and make more resilient
critical functionalities such as user authentication. Especially when creating web applications. The

managed services dedicated to solving this aspect is Amazon Cognito.

Amazon Cognito provides a building-block that can accelerate and secure the process of

authenticating and authorizing users to mobile or web applications.

Before getting into the heart of the matter it is useful to define the specific terms of the service

and the preparatory concepts to understanding the topics covered.

What is Amazon Cognito?

Amazon Cognito allows you to add registration and authentication to Web and mobile applications.
It allows users to authenticate either through a fully managed user pool or through an external

identity provider (IdP). It can also provide temporary security credentials to access AWS resources.

Amazon Cognito is compatible with external identity providers that support the SAML or OpenID
Connect standards like social identity providers such as Facebook, Twitter and Amazon. And also

allows you to integrate your own identity provider.

Amazon Cognito is a distributed and public access service; this means that anyone can call the
Cognito API to authenticate to a service. This is a standard and well-established manner; it is
normal for an authentication service to be public and accessible in order to allow clients to carry

out login operations.

https://blog.besharp.it/en/
https://blog.besharp.it/en/tag/amazon-api-gateway-en/
https://blog.besharp.it/en/tag/multi-factor-authentication-en/
https://blog.besharp.it/en/tag/single-sign-on-sso-en/

The security of the solution is guaranteed by Amazon, which completely manages the service and

the APIs accessible by the public.

Clients can then log in using one of the supported IdPs, or send Cognito a username and password
to obtain an identity token and, optionally, a set of IAM credentials whose policy is controlled by

Cognito through specific configurations.

Clients with an identity token can authenticate with services that use Amazon Cognito as an IdP
and can use |IAM keys (if provided) to call the application backend that supports IAM authentication

or to directly access resources on the AWS accounts allowed by specific policies.

Amazon Cognito integrates with APl Gateway, thus protecting the back-ends in a completely

managed and automatic way.

The API Gateway back-ends protected by Cognito will not receive requests that do not pass the

authentication checks, ensuring a more resilient and cost-efficient solution.

The integration between Amazon Cognito and API Gateway allows you to implement only
authentication or authentication and authorization.

If you intend to develop authentication only, it will be possible to take advantage of the integration
through Cognito User Pool, which will guarantee access to the API to any user who is correctly

authenticated by credentials or through an external IdP.

If IAM integration is selected, authentication and authorization features can be obtained. The
identity token of a User Pool will be used to obtain a pair of IAM keys to be used to make back-end

calls.

It becomes possible to limit the sets of APIs accessible to different groups of users. Furthermore, it
is possible to give controlled and secure access to AWS resource sub-sets through the temporary
keys and the specific managed policies; for example, uploading a file to S3 or putting a message in
a queue without having to interact with the back-end of the application. In fact, off-loading few

critical operations with deep integration with our Service Provider is very safe and effective.

Users are managed through two types of pools, which are at the heart of Amazon Cognito’s

operation: User Pools and Identity Pools.

Let’s move on to describe the main concepts of Cognito.

User Pools

A user pool is a user directory configurable for use with a Web and/or mobile application. A user

pool allows you to securely store your users’ profile attributes.

This is a convenient way to completely off-load users’ management who decide to register using a

username and password. Among the operations which can be off-loaded there are certainly the

secure storage of user data, the verification of possible telephone numbers or e-mail addresses, the

management of the API and the flow of registration, login, logout, and password reset.

User pools are a fundamental component of any authentication system based on Amazon Cognito.
It is also possible to connect a user pool with an external IdP to allow service users to register and

log in via Facebook, Google, Amazon or any public IdP that supports OpenlD.

Identity Pools

Identity pools are containers used by Cognito Identity to keep the application’s federated
identities organized. An identity pool associates federated identities from external identity
providers with a unique specific user identifier. Identity pools do not store user profiles, but only
their unigue ids generated and managed by Cognito. An identity pool can be associated with one

or more applications.

Cognito Identity assigns users a set of temporary credentials with limited privileges to access AWS
resources, so it’s not necessary to use AWS account credentials to allow users to interact with cloud
resources. Authorizations for each user are controlled through customizable AWS IAM roles. It is
possible to define rules for choosing the IAM role of each user; if you use groups in a Cognito user
pool, you can assign |IAM roles based on those groups. Cognito Identity also allows you to define a
separate IAM role with limited permissions for non-authenticated guest users. Finally, you can use
unique identifiers generated by Cognito to define user access to specific resources. For example,

you can create a policy for an S3 bucket that allows users to access only their own folder.

Now that we’ve defined all the fundamental concepts we can move on to the central part of our
article, or the tutorial to configure Amazon Cognito in order to allow users to be authenticated
through their Google identity.

Tutorial:

The first step to complete Cognito configuration is to create a User Pool that we will subsequently
federate with Google and with an Identity Pool in order to allow users to identify themselves via

Google and obtain an identification token and a pair of keys to access cloud resources.

Creating a User Pool

From the Amazon Console, navigate to the Cognito dashboard and click on the “Create a User

Pool” button to start the creation wizard.

First, a name for our User Pool will be requested. At this point, we can decide whether to proceed
with a step by step wizard or to create a User Pool with the default options and to revise it before

creation. We choose the first option by clicking the “Review Settings” button.

The first step of the wizard allows us to choose with which information users can log in on
Cognito. The options are many: we can choose to authenticate the user through the use of a

username, an e-mail, a phone number, etc... It is important to note that these possibilities are valid

only for those users who will log in directly on Cognito (after registering) and for those who will use

any external IdPs.

For this tutorial, we are going to select “E-mail address or phone number” and then “Allow e-mail
addresses” (As per image). In this way, the only possibility for users to login will be by using a

valid e-mail.

How do you want your end users to sign in?

In this step, it is possible to configure the level of security to which every user will have to follow in
order to create a secure password. We can insert the minimum limit of password characters and
various constraints on the mandatory use of special characters, numbers, capital letters, and
lowercase letters. We leave for the rest the default values and continue with the other

configurations.

The second and third points of this step allow us to configure the way users are created and the
maximum duration of temporary passwords generated by administrators for new users. Basically,
we have two ways to create users. The first allows users themselves to be able to register through a
registration page, the second instead provides an invitation by the system administrator. This
means that it will be the user who owns the application, through the Amazon Console or through
the CLI, to create the user with a temporary password that the user will change at first login. For
our tutorial, we select the possibility of being able to register users independently (as shown in the

image) and continue by clicking the “Next step” button.

What password strength do you want to require?

Do you want to allow users to sign themselves up?

How quickly should temporary passwords set by administrators expire if not used?

oays o e

In this part of the wizard, we can enable the Multi-Factor Authentication and optionally the
verification of the e-mail/phone during registration. For our tutorial, we can leave the MFA disabled

|n

and select “e-mail” as an attribute to verify in case of independent registration.

In the next step, instead, it is possible to configure all the automatic messages that will be sent by
Cognito to the end-user. These messages include temporary passwords and verification codes that
can be sent via e-mail or via SMS by configuring Amazon SNS. For our tutorial, we can leave

everything at default and move onto the next step.

At this point in the wizard, we can add tags to the resource we are going to create. We add the

appropriate tags or even none if it’s just an experiment and move onto the next step.

Now we are asked if we want it to automatically save the devices so as not to require the use of
the MFA at every access. Since in the previous step we left the MFA disabled, we select “No” and

proceed to the next step.

We are now asked to create an App Client which will then be used by our application to make the
necessary registration and login calls. To do this, simply press the “add an app client” button, enter
a name, remove the checkmark from“Generate client secret” and press the “Create app client”
button.

We can then finish the wizard by creating the user pool by pressing the button on the last screen.

Before moving onto the integration configurations and choose a domain name for our User Pool.

Once chosen, click on the “Check availability” button and then on “Save changes”.

External Identity Pool Integration Configuration

Once the user pool has been created, we can move onto integration with our SSO. In order to do
so, we need to create a new project from the Google Developer Console and get login credentials.

Once the credentials are obtained we will pass to the Cognito configuration.

Let’s go to the Google Developer Console and create a new project (as in the image).

Select from_sesiserr ~

[)

RECENT

CANCEL OPEN

New Project

Project name *

test (2]

Project |D: gentle-crossbar-251408. |t cannot be changed later. EDIT

Organization

besharp.it [7]
This project will be attached to besharp.it.

Location *
M) besharp.it BROWSE

Parent organization or folder

CREATE CANCEL

Once we have created our project, we go to the “OAuth Consent Screen” entry.
Here we will configure the name of the application and we will enable the domain

“amazoncognito.com”. To do this, just insert it in the appropriate field called “Authorized Domains”

and click on the “Save” button.

Let’s now go under the “Credentials” field and click on the “Create credentials” button selecting

“OAuth Client ID” from the proposed drop-down menu.

APls
Credentials

You need credentials to access APls. Enable the AP
use and then create the credentials they require. D

AP, you need an AP| ke ce account, or an OAuth
ID. For more information, s : guthentication documentation

Create credentials ~

AP key

Identifies your project using a simple AP| key to check quota and access

OAuth client ID
Requests user consent so your app can access the user's data
Service account key

Enables server-to-server, app-level authentication using robot accounts

Help me choose
Asks a few guestions to help you decide which type of credential to use

We then select “Web application”, insert a name for our client and as authorized javascript sources,
we enter the domain name of our Cognito User Pool previously created (eg: https://test-
articolo.auth.eu-west- l.amazoncognito.com). We then go on to enter the same domain name
followed by /oauth2/idpresponse within the authorized redirection URI field (eg: https://test-

articolo.auth.eu-west-l.amazoncognito.com/oauth2/idpresponse) and press the “Create” button.

At this point, a popup will appear containing our “Client ID” and our “Client Secret”. We copy the
secrets into a text file to have them quickly available later on.

Let’s now move on to the integration of Cognito and Google starting with Amazon Cognito.

Navigate through the “Identity Provider” menu and select the type of integration we want to carry

out.

From this point of view, Amazon offers integration with major identity providers including
Facebook, Google, Amazon and, more generally, all providers that support Openld and SAML
protocols. For this tutorial, we're going to integrate with Google. To do this, we click on the
“Google” button and we will enter the information of the identity provider with those returned to us

during the creation of the Google project.

The last remaining step concerns the linking of the two previously created resources. To do this,

just navigate through the “App client settings” tab. In the proposed screen, we will have to select
our identity provider previously created as Identity Provider and supply the callback endpoints as
in the image. The callback endpoints will be the endpoints called at the end of authentication and

will contain our token.

nnnnnnnnnn

To do a test we can use the Hosted Ul provided by Cognito browsing to the domain we previously

chose and passing our client id, the redirect uri and some additional information as an example:

https://test-articolo.auth.eu-west-l.amazoncognito.com/authorize?client_id={client-

id}&redirect_uri=http://localhost:4200/auth/verify&response_type=token

Once the authentication process is complete, we will automatically be redirected to our callback
address http://localhost: 4200/auth/verify with the difference that we will find our access tokens in

the query string parameter.

At this point, it is up to the application to retrieve the tokens from the callback call, which for the

purpose of this tutorial we set to localhost, and use them for subsequent back-end calls.

With this tutorial, we have seen how to configure the integration between Amazon Cognito and
Google from start to finish. We have illustrated and tested how to get the identification token and

how to use it to access back-end services.

Stay tuned for more interesting tutorials!

we make [T run

beSharp

Dal 2011 beSharp guida le aziende italiane sul Cloud. Dalla piccola impresa
alla grande multinazionale, dal manifatturiero al terziario avanzato, aiutiamo
le realta piu all’lavanguardia a realizzare progetti innovativi in campo IT.

Get in touch

beSharp.it
proud2becloud@besharp.it

Copyright © 2011-2021 by beSharp srl - P.IVA 1T0O2415160189

https://www.besharp.it/
mailto:proud2becloud@besharp.it

