we make IT run.

AWS CLOUDFORMATION - AWS IAM: HOW TO
DELEGATE DEPLOYMENT SAFELY

AWS CloudFormation AWS |dentity and Access Management (IAM) DevSecOps

Infrastructure as Code (1aC)

beSharp | 30 April 2020

Day by day the number of companies that look with interest at the cloud computing world
increases and many of them wonder how the cloud can help their business and which security flaws
it can introduce. One of the most complicated tasks of the security team in fact is to understand
how to exploit novel cloud technologies, with their unprecedented flexibility, without introducing

security vulnerabilities.

One of the most useful tools to enforce compliance with security best practices is certainly
Infrastructure as Code (IaC), which allows us to handle our resources inside the cloud environment
through templating systems. This makes it possible to deploy the infrastructure in a repeatable and

reproducible way.

What is AWS CloudFormation?

In this article we will focus on the AWS service called AWS CloudFormation.

CloudFormation lets you create, update and handle resources in your AWS Cloud Environment
through the use of JSON or YAML templates in which you can describe resource by resource your

own infrastructure.

This leads to a huge set of questions: how can | have control on who deploy what? If | can handle
each resource, can | also handle resources permissions? If | can handle permissions, how can |
delegate the use of CloudFormation to other parties or team members without the risk of

privileges escalation attacks?

https://blog.besharp.it/en/
https://blog.besharp.it/en/tag/aws-cloud%e2%80%8bformation-en/
https://blog.besharp.it/en/tag/aws-identity-and-access-management-iam-en/
https://blog.besharp.it/en/tag/devsecops-en/
https://blog.besharp.it/en/tag/infrastructure-as-code-iac-en/

To answer these questions we need to introduce another service: AWS ldentity Access
Management (AWS IAM).

What is AWS |IAM?

AWS ldentity and Access Management (IAM) is the AWS service that allows one to handle all
permissions inside your AWS Cloud Environment. If you want to execute any action (using the
Console, the CLI or the SDK) the permission to do so has to be written inside a policy attached to

your “user”.

Use Case

Now that we know which are the instruments we can use, let’s describe a very common situation:
we created a CloudFormation template that provisions an infrastructure composed by a pre-
configured EC2 instance (through Amazon Machine Image) which needs to access an S3 bucket.
Being a simple infrastructure, we would like to allow the developers to deploy this template without
asking the Security team.

S3 Bucket

~ A

L

EC2 Instance (with Security Group) IAM Role (Instance Profile)

More farsighted people know that to deploy this infrastructure the CloudFormation template needs
to create an IAM Role for the EC2. Thus we need to make sure that the developer who will run the
template will not be able to modify the policies of this role in order to give the EC2 (and thus

himself) wider permission (e.g. admin access).

Without Permission Boundaries

The template that we will deploy is the following one:

AWSTemplateFormatVersion: '2010-09-09'
Description: |
CloudFormation and IAM Permission Boundaries Demo

HHHA AR AAAAAAAAAAAAAAAAAA

#

Metadata

Metadata:

AWS: :CloudFormation: :Interface:

ParameterGroups
- Label:
Parameters:

- VpcId

- AmiId
- KeyName

{default:

— SubnetId

- Label:
Parameters:

{default:

- NameSpace

- ProjectName

- Environment

'Required parameters'}

'Optional parameters'}

#

Parameters

Parameters:

NameSpace:
Type: String
Default:

ProjectName:
Type: String
Default:

Environment:
Type: String
Default:

VpclId:
Type: AWS:

'dev

:EC2:

SubnetId:

Type: AWS::EC2

AmiId:

'besharp’

:VPC::Id

: :Subnet::Id

'permission-boundaries-demo’

Type: AWS:

KeyName:

Type: AWS:

:EC2:

:EC2:

:Image: :Id

:KeyPair: :KeyName

#

Conditions

72 /4

Conditions: {

}

#

LL AL AL L AL /.

LL AL AL LL AL AL

Mappings

/. LL AL AL /.

/.

4L AL /. 7787 LL AL AL 4L AL /.

Ve Ve

Mappings: {}

7 Ve

7

Ve

e 7 7 Ve 77

Resources

V) 72 4. /. V) 4. /. V) 4. /. /. V) 73 /. /.
Va Vi ara Va 777 Vs Vs Va 777 Vi aa Vs I Ve Vi ara Ve Va G

Resources:

LL AL AL L AL /. 777 LL AL AL LL AL AL 4L AL /. S 3 LL AL AL 4L AL /. LL AL AL
Ve Va 77 7 Va Ve 77 Va 77 7 7 Ve 77 7 7

S3Bucket:
Type: AWS::S3::Bucket
Properties:
BucketName: !Sub 'com.${NameSpace}.S${ProjectName}'
Tags:
- Key: Name
Value: !Sub '${NameSpace}-${ProjectName}'
- Key: Owner
Value: 'name.surname@besharp.it'

LL AL AL LL AL AL 4L AL /. LL AL AL LL AL AL 4L AL 4 EC 2 LL AL AL LL AL /. 7787 LL AL AL LL AL /. 778
Va Ve 77 7 Ve 77 Ve 77 7 7 Ve Va 7 7

EC2Instance:
Type: AWS::EC2::Instance
Properties:
IamInstanceProfile: !Ref IAMInstanceProfile
ImageId: !Ref AmiId
InstanceType: t3a.micro
KeyName: !Ref KeyName
NetworkInterfaces:
- AssociatePublicIpAddress: 'true'
DeviceIndex: '0'
GroupSet:
- IRef EC2SecurityGroup
SubnetId: !Ref SubnetId

Tags:
- Key: Name
Value: !Sub '${NameSpace}-${ProjectName}'
- Key: Owner

Value: 'name.surname@besharp.it'

EC2SecurityGroup:
Type: AWS::EC2::SecurityGroup
Properties:
GroupName: !Sub 'S${NameSpace}-${ProjectName}-ec2'
GroupDescription: !Sub 'Security Group for ${NameSpace}-${ProjectName}-ec2'
VpcId: !Ref VpcId

Tags:
- Key: Name
Value: !Sub '${NameSpace}-${ProjectName}-ec2'
- Key: Owner

Value: 'name.surname@besharp.it’

IAM

IAMInstanceProfile:
Type: AWS::IAM::InstanceProfile
Properties:
Roles:
- |Ref IAMRole
InstanceProfileName: !Sub 'S${NameSpace}-${ProjectName}'

IAMRole:
Type: AWS::IAM::Role
Properties:
RoleName: !Sub '${NameSpace}-${ProjectName}'

AssumeRolePolicyDocument:
Version: '2012-10-17'

Statement:
- Effect: Allow
Principal:

Service: ec2.amazonaws.com
Action: sts:AssumeRole
Path: '/'
Policies:
- PolicyName: 'EC2Access'
PolicyDocument:
Version: '2012-10-17"'
Statement:
- Effect: 'Allow’
Action:
's3:GetObject’
Resource: !Sub '${S3Bucket.Arn}/*'
Tags:
- Key: Name
Value: !Sub '${NameSpace}-${ProjectName}'
- Key: Owner
Value: 'name.surname@besharp.it'

V) 4. /. /. V) 73 /. /. V) 73 /. /. V) 72 4. /.

Outputs
Outputs:
StackName:

Description: 'Stack name.'
Value: !Sub '${AWS::StackName}'

Here we can find the information to create:

e S3 Bucket
e EC2 Instance + Security Group

¢« |AM Role + Instance Profile

We attached to the developer IAM user the following policy so that he can deploy that template:

{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "CloudFormationReadAccess",
"Effect": "Allow",
"Action": [

"cloudformation:DescribeStacks",
"cloudformation:ListChangeSets",
"cloudformation:ListExports",
"cloudformation:ListImports",
"cloudformation:ListStacks"

1y

"Resource": "*"

"Sid": "CloudFormationWriteAccess",

"Effect": "Allow",

"Action": [
"cloudformation:CreateStack",
"cloudformation:DeleteStack",
"cloudformation:TagResource",
"cloudformation:UpdateStack",
"cloudformation:ValidateTemplate'

1r

"Resource": "*"

"Sid": "EC2ReadAccess",

"Effect": "Allow",

"Action": [
"ec2:DescribelImages",
"ec2:DescribeInstances",
"ec2:DescribeKeyPairs",
"ec2:DescribeSecurityGroupReferences",
"ec2:DescribeSecurityGroups",
"ec2:DescribeSubnets",
"ec2:DescribeVpcs"

1/

"Resource": "*"

"Sid": "EC2WriteAccess",

"Effect": "Allow",

"Action": |
"ec2:AssociatelamInstanceProfile",
"ec2:AuthorizeSecurityGroupEgress",
"ec2:AuthorizeSecurityGroupIngress",
"ec2:CreateSecurityGroup",
"ec2:CreateTags",
"ec2:DeleteSecurityGroup",
"ec2:DeleteTags",
"ec2:RevokeSecurityGroupEgress",
"ec2:RevokeSecurityGroupIngress",
"ec2:RunInstances",
"ec2:StartInstances",
"ec2:StopInstances"”,
"ec2:TerminateInstances"”

1,

"Resource": "*"

"Sid": "IAMReadAccess",

"Effect": "Allow",

"Action": [
"iam:GetInstanceProfile",
"iam:GetRole",
"iam:GetRolePolicy"

1,

"Resource": "*"

"Sid": "IAMWriteAccess",
"Effect": "Allow",
"Action": [
"iam:AddRoleToInstanceProfile",
iam:CreateInstanceProfile",
iam:CreateRole",
iam:DeleteInstanceProfile",
"iam:DeleteRole",
iam:DeleteRolePolicy",
iam:PassRole",
"iam:PutRolePolicy",
iam:RemoveRoleFromInstanceProfile",
iam:TagRole",
iam:UntagRole"

1,
"Resource": "*"

"Sid": "S3WriteAccess",

"Effect": "Allow",

"Action": [
"s3:CreateBucket",
"s3:DeleteBucket",
"s3:PutBucketTagging"

1,

"Resource": "*"

If we connect to the newly created EC2 instance, we can verify that it can download objects from
the S3 Bucket:

ubuntu@ec2-demo:~$ aws s3 cp s3://com.besharp.permission-boundaries-demo/if-you-downlo
ad-me-you-are-fine .

download: s3://com.besharp.permission-boundaries-demo/if-you-download-me-you-are-fine
to ./if-you-download-me-you-are-fine

ubuntu@ec2-demo:~$ cat if-you-download-me-you-are-fine

test-ok

And that it can’t, for example, create other buckets:

ubuntu@ec2-demo:~$ aws s3api create-bucket --bucket can-i-create-it

An error occurred (AccessDenied) when calling the CreateBucket operation: Access Deni
ed

Now, the developer (regardless of the good or bad intention) might want to modify the set of
permissions attached to the role to execute actions that normally he is not authorized to do. The

IAM Role resource can be modified like this:

IAMRole:
Type: AWS::IAM::Role
Properties:
RoleName: !Sub '${NameSpace}-${ProjectName}'
AssumeRolePolicyDocument:
Version: '2012-10-17'

Statement:
- Effect: Allow
Principal:

Service: ec2.amazonaws.com
Action: sts:AssumeRole
Path: '/'
Policies:
- PolicyName: 'AdministratorAccess'
PolicyDocument:
Version: '2012-10-17'
Statement:
- Effect: 'Allow'
Action:
- %!
Resource: '*'
Tags:
- Key: Name
Value: !Sub '${NameSpace}-${ProjectName}'

In this way, for example, the instance can download objects from the bucket, but also create new
buckets (not to mention that, modifying the policy roughly like that, in fact it has administrator

permissions inside the account):

ubuntu@ec2-demo:~$ aws s3 cp s3://com.besharp.permission-boundaries-demo/if-you-downlo
ad-me-you-are-fine .

download: s3://com.besharp.permission-boundaries-demo/if-you-download-me-you-are-fine
to ./if-you-download-me-you-are-fine

ubuntu@ec2-demo:~$ cat if-you-download-me-you-are-fine

test-ok

ubuntu@ec2-demo:~$ aws s3api create-bucket --bucket can-i-create-it

{

"Location": "/can-i-create-it"

Clearly the principal concern is not only the fact that a developer can gain unintended permissions,
but also the increased attack surface exploitable from malicious entities: the old style linux

privileges escalation ported to the cloud!

With Permission Boundaries

Permission boundaries are nothing more than additional IAM policies attached to an IAM entity to
limit its permissions. Indeed, the resulting permissions will be the intersection between the ones
granted by the |IAM policy and the ones allowed by the permission boundary. By themselves, they
do not resolve any problem but we can force the developer to attach the permission boundary if he

wants to create a role.

The IAM policy part becomes like this:

"Sid": "IAMPermissionBoundaryWriteAccess",
"Effect": "Allow",
"Action": |

"iam:CreateRole",

"iam:PutRolePolicy",

"iam:UpdateRole",

"iam:UpdateRoleDescription”
1,
"Resource": "arn:aws:iam::111122223333:role/dev-namespace/*",
"Condition": {

"StringEquals": {

"iam:PermissionsBoundary": "arn:aws:iam::111122223333:policy/beshar
p-permission-boundary-demo"

}

"Sid": "IAMPassRoleAccess",
"Effect": "Allow",
"Action": [

"iam:PassRole"

1y

"Resource": "arn:aws:iam::111122223333:role/dev-namespace/*"

"Sid": "IAMWriteAccess",

"Effect": "Allow",

"Action": [
"iam:AddRoleToInstanceProfile",
"iam:CreateInstanceProfile",
"iam:DeleteInstanceProfile",
"iam:DeleteRole",
"iam:DeleteRolePolicy",
"iam:RemoveRoleFromInstanceProfile",
"iam:TagRole",

"iam:UntagRole"

1,

"Resource": "*"

o

If during the creation phase of the IAM role through CloudFormation is not present the permission

boundary attachment, the creation will fail.

API: iam:PutRolePolicy User:

2020-04-17 12:55:10

P
UTC+0200 1AMRole ® UPDATE_FAILED permission-boundaries-demo is not authorized to

perform: iam:PutRolePolicy on resource: role
besharp-permission-boundaries-demo

To attach the permission boundary to the instance |IAM role, the resource will be modified as

following:

IAMRole:
Type: AWS::IAM::Role
Properties:
RoleName: !Sub '${NameSpace}-${ProjectName}'
PermissionsBoundary: !Ref PermissionBoundaryArn
AssumeRolePolicyDocument:
Version: '2012-10-17'

Statement:
- Effect: Allow
Principal:

Service: ec2.amazonaws.com
Action: sts:AssumeRole
Path: '/dev-namespace/'
Policies:
- PolicyName: 'AdministratorAccess'
PolicyDocument:
Version: '2012-10-17"'
Statement:
Effect: 'Allow'
Action:
- %!

Resource: '*'

Tags:
- Key: Name
Value: !Sub '${NameSpace}-${ProjectName}'
- Key: Owner

Value: 'name.surname@besharp.it’

Note: to make the solution safer and to limit the dangerous action iam:PassRole, we added the Path

attribute, which in fact creates a namespace for developers inside |1AM.

Attaching the permission boundary, the creation phase will succeed and the instance permissions

(and the ones of any IAM role that the developer wants to create) will be limited.

ubuntu@ec2-demo:~$ aws s3 cp s3://com.besharp.permission-boundaries-demo/if-you-downlo

ad-me-you-are-fine .

download: s3://com.besharp.permission-boundaries-demo/if-you-download-me-you-are-fine
to ./if-you-download-me-you-are-fine

ubuntu@ec2-demo:~$ cat if-you-download-me-you-are-fine

test-ok

ubuntu@ec2-demo:~$ aws s3api create-bucket --bucket can-i-create-it

An error occurred (AccessDenied) when calling the CreateBucket operation: Access Deni
ed

In this configuration permission boundaries are the |AM policies under Security team control. The
team can agree on which is the maximum set of permissions that a resource can have and AWS |IAM
will assure that all resources with the restricted IAM role associated with them will not be able to

perform unintended actions or to create another resource which can do so.

Conclusion

We have seen how, thanks to a simple modification of the IAM entities configurations (Permission
Boundaries), you could enforce the limitation of permissions. This approach usually identifies the
developer as a delegated admin. In this way we can increase the independence of developers,
reducing the number of daily tasks that the few people with wide permission inside the AWS Cloud

Environment have to fulfill without introducing security exploits.

Satisfied? @ feel free to leave comments or to contact us to discuss this or other possible
solutions!

https://www.besharp.it/en/contact-us/

we make [T run

beSharp

Dal 2011 beSharp guida le aziende italiane sul Cloud. Dalla piccola impresa
alla grande multinazionale, dal manifatturiero al terziario avanzato, aiutiamo
le realta piu all’lavanguardia a realizzare progetti innovativi in campo IT.

Get in touch

beSharp.it
proud2becloud@besharp.it

Copyright © 2011-2021 by beSharp srl - P.IVA 1T0O2415160189

https://www.besharp.it/
mailto:proud2becloud@besharp.it

