
beSharp | 7 February 2020

TROPOSPHERE: A BETTER WAY TO BUILD, MANAGE

AND MAINTAIN A CLOUDFORMATION BASED

INFRASTRUCTURE ON AWS

AWS Cloud Formation DevOps Python Software as a Service (SaaS)

Nowadays most of the modern SaaS applications are developed and deployed on Cloud providers

and, in particular, Amazon Web Service, the first real Cloud provider, took and held the lead of this

market due to the quality and the flexibility of its services.

AWS hosted Cloud Infrastructures keep getting larger and more complex with time in order to take

full advantage of new services released by AWS. In fact, the number of services offered directly by

Amazon is gargantuan and keeps growing every year. Using AWS services whenever possible

instead of custom solutions deployed on EC2 virtual machines results in a huge decrease in the

infrastructure setup and maintenance costs since Amazon is responsible for the deployment, Cloud

optimization, security and maintenance of each service. Furthermore, most of the AWS services are

designed to be highly available without any additional configuration, saving another significant

configuration burden for the DevOps.

Using the AWS services as building blocks allows developer to create almost every type of

application, for example, a typical serverless web application leverages Amazon Cognito for

authentication, AWS Lambda/ApiGateway for the backend, DynamoDB for the database, SNS/SES

for push and mail notifications to users, S3/Cloudfront for the frontend and SQS for internal

queuing. However most applications are much more complicated than that (they often needs

machine learning, datalakes, vpn connections to other services, different databases, batch

processing and so on) and the number of different services and resources needed quickly escalates

resulting in infrastructure so big and complicated that cannot be safely managed ‘by hand’

anymore. In fact, sometimes modifications to just one component (e.g. a security group or a routing

table) to could result in unexpected side effects impacting several services and has the potential to

take the whole Application offline.

https://blog.besharp.it/en/
https://blog.besharp.it/en/tag/aws-cloud%e2%80%8bformation-en/
https://blog.besharp.it/en/tag/devops-en/
https://blog.besharp.it/en/tag/python-en/
https://blog.besharp.it/en/tag/software-as-a-service-saas-en/
https://aws.amazon.com/products/

In these cases, IaC (Infrastructure as Code) comes to the rescue. Through IaC it is possible to

describe the whole AWS infrastructure writing regular code, so you can version it using Git just like

any other code project. When the IaC code is executed it will create or update the infrastructure in

order it to be exactly like you wrote in your code! If you need to change the infrastructure you

update the IaC commit your change and rerun the code

If all this sounds too good to be true you are probably right! Every abstraction level we add to our

software development flow comes with its own problems and IaC is no exception. The first problem

we had when we decided to go with the IaC paradigm is the choice of the right tool, in fact there

two main several IaC frameworks for AWS out there: Terraform and CloudFormation. We tried

Terraform but found several issues which were a no-go for us:

Terraform uses its own language which is also very limited: no loops and cycles are possible

Sometimes Terraform fails to wait for resource creation resulting in difficult to debug errors

It is possible for two developers to unknowingly run terraform at the same time resulting in

infrastructure inconsistencies, if you want to use terraform a pipeline flow needs to be enforced

for all projects at all times

Rollbacks are often not carried out correctly.

Changes often break at runtime because Terraform sometimes does not update resources in the

right order.

The resources are created using the AWS APIs and there is not a centralized place describing the

actual state of the infrastructure

Terraform run locally (or VM/container on AWS) so could be affected by network/hardware

errors

CloudFormation, on the other hand, is a managed service by AWS: the user must simply write a

YAML or JSON file describing all the infrastructure upload it on S3 or directly to Cloudformation

and the service will take care of running it safely and statefully. Rollbacks are natively supported

and it is also possible to execute “dry runs” of the template by creating a Change Set (analogously

to terraform plan). In general, the execution of the template is much less error-prone than the one

from terraform thanks to the service being AWS native. The only compelling Terraform use case is

that of a multi-cloud infrastructure.

However, CloudFormation has its own drawbacks: YAML files are often very verbose and difficult to

write and debug and like terraform do not support advanced logic and loops. Furthermore spitting

a project in more files requires nested stacks that are difficult to integrate with Change Sets. So the

next step is to generate the Cloudformation YAML templates using a more advanced language like

python!

Here we have two alternatives AWS CDK and Troposphere. AWS CDK is new and extremely

powerful and allows to declare complex infrastructure with very few lines of codes. However, being

high level is also its biggest fault: some very low-level associations between resources are difficult

to create and furthermore the output YAML template is difficult to read because all logical Ids of

the resources are managed by CDK.

On the contrary, troposphere is really simple: it is just a Python DSL which maps CloudFormation

Entities (all of them!) to Python classes and the other way round.

This gives us a very simple way to create a template that looks exactly like we want but is

generated through a high level easily maintainable language. Furthermore, Python IDEs will help us

fixing problems without even running the YAML template and the compilation step to YAML will

break if we create inconsistent references.

To demonstrate the power of this workflow we show here how we can create a simple VPC with

subnets, one for each Availability Zone.

First of all, let’s look at the raw CloudFormation template:

Description: AWS CloudFormation Template to create a VPC
Parameters:
 SftpCidr:
 Description: SftpCidr
 Type: String
Resources:
 SftpVpc:
 Properties:
 CidrBlock: !Ref 'SftpCidr'
 EnableDnsHostnames: 'true'
 EnableDnsSupport: 'true'
 Type: AWS::EC2::VPC
 RouteTablePrivate:
 Properties:
 VpcId: !Ref 'SftpVpc'
 Type: AWS::EC2::RouteTable
 PrivateSubnet1:
 Properties:
 AvailabilityZone: !Select
 - 0
 - !GetAZs
 Ref: AWS::Region
 CidrBlock: !Select
 - 4
 - !Cidr
 - !GetAtt 'SftpVpc.CidrBlock'
 - 16
 - 8
 MapPublicIpOnLaunch: 'false'
 VpcId: !Ref 'SftpVpc'
 Type: AWS::EC2::Subnet
 PrivateSubnet2:
 Properties:
 AvailabilityZone: !Select
 - 1
 - !GetAZs
 Ref: AWS::Region
 CidrBlock: !Select
 - 5
 - !Cidr
 - !GetAtt 'SftpVpc.CidrBlock'
 - 16

 - 8
 MapPublicIpOnLaunch: 'false'
 VpcId: !Ref 'SftpVpc'
 Type: AWS::EC2::Subnet
 PrivateSubnet3:
 Properties:
 AvailabilityZone: !Select
 - 2
 - !GetAZs
 Ref: AWS::Region
 CidrBlock: !Select
 - 6
 - !Cidr
 - !GetAtt 'SftpVpc.CidrBlock'
 - 16
 - 8
 MapPublicIpOnLaunch: 'false'
 VpcId: !Ref 'SftpVpc'
 Type: AWS::EC2::Subnet
 SubnetPrivateToRouteTableAttachment1:
 Properties:
 RouteTableId: !Ref 'RouteTablePrivate'
 SubnetId: !Ref 'PrivateSubnet1'
 Type: AWS::EC2::SubnetRouteTableAssociation
 SubnetPrivateToRouteTableAttachment2:
 Properties:
 RouteTableId: !Ref 'RouteTablePrivate'
 SubnetId: !Ref 'PrivateSubnet2'
 Type: AWS::EC2::SubnetRouteTableAssociation
 SubnetPrivateToRouteTableAttachment3:
 Properties:
 RouteTableId: !Ref 'RouteTablePrivate'
 SubnetId: !Ref 'PrivateSubnet3'
 Type: AWS::EC2::SubnetRouteTableAssociation

We immediately notice that the code is readily readable and understandable even if it was

automatically generated by a troposphere based script. As can immediately be seen most of the

code is duplicated since we created 3 subnets with relative attachments to a routing table.

The python troposphere script which generated the script is the following:

import troposphere.ec2 as vpc

template = Template()
template.set_description("AWS CloudFormation Template to create a VPC")

sftp_cidr = template.add_parameter(
 Parameter('SftpCidr', Type='String', Description='SftpCidr')
)

vpc_sftp = template.add_resource(vpc.VPC(
 'SftpVpc',
 CidrBlock=Ref(sftp_cidr),
 EnableDnsSupport=True,
 EnableDnsHostnames=True,
))

private_subnet_route_table = template.add_resource(vpc.RouteTable(
 'RouteTablePrivate',
 VpcId=Ref(vpc_sftp)
))

for ii in range(3):
 private_subnet = template.add_resource(vpc.Subnet(
 'PrivateSubnet' + str(ii + 1),
 VpcId=Ref(vpc_sftp),
 MapPublicIpOnLaunch=False,
 AvailabilityZone=Select(ii, GetAZs(Ref(AWS_REGION))),
 CidrBlock=Select(ii + 4, Cidr(GetAtt(vpc_sftp, 'CidrBlock'), 16, 8))
))
 private_subnet_attachment = template.add_resource(vpc.SubnetRouteTableAssociation(
 'SubnetPrivateToRouteTableAttachment' + str(ii + 1),
 SubnetId=Ref(private_subnet),
 RouteTableId=Ref(private_subnet_route_table)
))

print(template.to_yaml())

Running this script after installing Troposphere (pip install troposphere) will print the CF YAML

shown above. As you can see the python code is much more compact and easy to understand.

Furthermore, since Troposphere maps all the native cloudformation YAML functions (e.g. Ref, Join,

GettAtt, etc.) we don’t even need to learn anything new: every existing CF template can easily be

converted in a Troposphere template.

Differently from plain CloudFormation with troposphere we can assign the various entities to

python variables and use the python variables in the Ref and GettAtt functions in place of the

logical CloudFormation names of the resource: in the example above we referenced the private

subnet with Ref(private_subnet_route_table), not Ref(‘RouteTablePrivate’). This is a huge

advantage because we don’t need to remember the logical name while coding, the IDE will do that

for us and warn us if the resource is not defined or has a different name.

Troposphere is also able to manage flawlessly nested stack and other complex multi Stack

architecture through the Sceptre (https://github.com/Sceptre/sceptre) automation tool. However,

instead of using Sceptre you can also write a custom deployment script, like we did in beSharp, to

fully manage your deployment pipe and run automatic CloudFormation Drift changes check and

evaluate the Change Set for all the nested templates before executing the template.

As a final remark troposphere is also able to manage the reverse flow: from a YAML template to

python classes:

from cfn_tools import load_yaml
from troposphere import TemplateGenerator

template = TemplateGenerator(load_yaml(
 app_config.cloudformation.meta.client.get_template(
 StackName='MyStack')['TemplateBody']
))

https://github.com/Sceptre/sceptre

This is very useful in situations where you need to dynamically update the infrastructure.

To conclude using Troposphere is a very simple way to reap all the advantages of CloudFormation

together with the abstraction level provided by a modern programming language and it greatly

simplifies CloudFormation code development and deployments. If you are interested in this topic

do not hesitate to comment or reach us for further info!

https://www.besharp.it/en/contact-us/

beSharp

Dal 2011 beSharp guida le aziende italiane sul Cloud. Dalla piccola impresa

alla grande multinazionale, dal manifatturiero al terziario avanzato, aiutiamo

le realtà più all’avanguardia a realizzare progetti innovativi in campo IT.

Get in touch

beSharp.it

proud2becloud@besharp.it

Copyright © 2011-2021 by beSharp srl - P.IVA IT02415160189

https://www.besharp.it/
mailto:proud2becloud@besharp.it

