
beSharp | 21 February 2020

HOW TO CREATE A SERVERLESS PAYMENT SYSTEM

USING STRIPE AND AWS LAMBDA

AWS Lambda Serverless Stripe Payment

We are in the online shopping epoch and the implementation of the online payment methods into

cloud-native apps is becoming an increasing need for the market.

As we can guess, managing payments into our business flow requires a secure and reliable

infrastructure, that can guarantee the privacy and the consistency of data and transactions.

The integration to more and more numerous payment circuits involves a considerable effort in

development and maintainability.

Today we are introducing to you a fully serverless solution based on the famous service Stripe, a

payment middleware that provides to its users a back office dashboard and a REST interface.

A fully-managed service – like Stripe is – can help, but each payment flow has its own features

depending on different business requirements. It is strongly recommended to write server-side

code in order to keep this information secret so that it is possible to avoid any sensitive data

spread.

As a scalable and fully-managed service, Stripe allows us to build high performing applications.

Anyway, to get the most out of this service it is important to build an equally scalable and agile

back-end able to adapt the best way possible. To do so, Serverless technologies come to help.

In particular, in this article, we are focusing on the use of AWS Lambda, a serverless computing

service provided by Amazon web services.

For the beginners, Lambdas are stateless serverless functions. The developer is able to work in an

environment where he can write code without worry about host hardware and you pay only what

you use.

https://blog.besharp.it/en/
https://blog.besharp.it/en/tag/aws-lambda-en/
https://blog.besharp.it/en/tag/serverless-en/
https://blog.besharp.it/en/tag/stripe-payment-en/
https://stripe.com/en-it

Getting started with Stripe

Let’s deep dive into Stripe. How to use it?

First of all, sign up to Stripe.

Signing up is free and you’ll pay only for what you use. For pricing details check this page.

In this article, we are not going to explain every single feature of Stripe (form more details, see the

official documentation). Instead, we are going to integrate an AWS Lambda serverless application

with the API of our just-created Stripe account.

One of the main components of Stripe is the dashboard: it offers users the possibility to create and

manage resources like subscriptions and products.

As you can see from the dashboard, we can choose between two different kinds of APIs:

keypair test APIs through which you will be able to create test data (note: they will be visible only if

the “Viewing test data” is checked) and live API key, used to create real transactions (usually for

production environment).

Both of the keys must be stored in a secure place. The most reliable tool to store those kinds of

information is AWS Secret Manager, a key-value database used only to store credentials, access

keys or other kinds of data that can be considered sensible.

https://dashboard.stripe.com/register
https://stripe.com/it/pricing
https://stripe.com/docs
https://aws.amazon.com/it/secrets-manager/

To save new information, click on “Store a new secret” and select the secret’s type

In this case, we need to create only raw key-value data without any kind of integration.

And now let’s start with Lambda!

Finally, it’s time to create the Lambda function which will manage the payment.

In this example, we will use Python 3.6

NOTE: Be sure to have attached to the Lambda a LambdaLayer containing pip, stripe, and boto3

packages.

Through the algorithm implemented in the example below, we are creating a new subscription

instance attached to a user, starting from a subscription model created previously from the

dashboard. To use this code you will need the secret manager ARN and plan_id.

import stripe
import boto3
import json

client = boto3.client('secretsmanager')
keys = json.loads(client.get_secret_value(
 SecretId = 'arn:aws:secretsmanager:eu-central-1:169954988972:secret:stripe-AiFSZg',
)['SecretString'])
public_key = keys['stripe-public']
secret_key = keys['stripe-secret']
stripe.api_key = secret_key

def signup(event, context):
 card_data = event.get('cardData')
 email = event.get('email')

 attributes = event.get('attributes')
 create_stripe_customer(email, attributes, card_data)
 return event

def create_stripe_customer(email, user_data, payment_info):
 customer_id = stripe.Customer.create(email = email, metadata = user_data)['id']
 payment_method_id = create_payment_method(payment_info)
 stripe.PaymentMethod.attach(
 payment_method_id,
 customer = customer_id
)
 return {
 "customer_id": customer_id,
 "plan": create_stripe_plan(customer_id)
 }

def create_payment_method(payment_info):
 return stripe.PaymentMethod.create(
 type = "card",
 card = {
 "number": payment_info.get('cardNumber'),
 "exp_month": payment_info.get('expirationMonth'),
 "exp_year": payment_info.get('expirationYear'),
 "cvc": payment_info.get('ccv'),
 }).get('id')

def create_stripe_plan(customer_id):
 return stripe.Subscription.create(
 customer = customer_id,
 items = [{
 "plan": "plan_idxxxxxxx"
 }]
).get("id")

As you can see, this Lambda gets the values from the event payload; it will change based on the

service integrated to the Lambda.

There are several ways to use your Lambda: it can be used as a trigger in an SQS queue, as a

resource in an API Gateway or it can invoke directly from your client.

Congratulation!

By following these steps, you have successfully created your serverless payment system. Now you

are ready to handle millions of users containing and optimizing infrastructural costs. It’s time to try

it in a production environment!

Still curious about Stripe or AWS Lambda? Contact us to have a chat with our Cloud Expert.

See you in the next article!

https://www.besharp.it/en/contact-us/

beSharp

Dal 2011 beSharp guida le aziende italiane sul Cloud. Dalla piccola impresa

alla grande multinazionale, dal manifatturiero al terziario avanzato, aiutiamo

le realtà più all’avanguardia a realizzare progetti innovativi in campo IT.

Get in touch

beSharp.it

proud2becloud@besharp.it

Copyright © 2011-2021 by beSharp srl - P.IVA IT02415160189

https://www.besharp.it/
mailto:proud2becloud@besharp.it

