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MACHINE LEARNING ON AWS: HOW TO CREATE AND

DEPLOY A ML BACKED SERVICE WITH AWS

SAGEMAKER

AI How-to ML

In the last decade, the way we deal with and manage information dramatically changed due to two

main reasons: on the one hand, the cost of data storage is becoming lower and lower, mainly due

to the broad adoption and spread of public cloud services; on the other, thanks to the ubiquitous

use of ERPs, CRMs, IoT platforms, and other monitoring and profiling software, a huge amount of

data has become available to companies, both about their internal processes and about customer

preferences and behaviors. So, basically, we have the opportunity to deal with more and more data,

with an always increasing data quality, at a fraction of the cost.

The availability of these big datasets to be analyzed and mined for information sparked a new

interest in Artificial Intelligence and particularly Machine Learning  (ML), which can be used to

extract a predictive model from an existing dataset.

The rise of internet integrated devices (IoT) dramatically increased the rate at which data are

created and stored and the availability of these data, combined with new ML techniques,  in turn,

gives rise to a plethora of novel possibilities which would have been unthinkable just a few years

ago. For example it is now possible to know how customers are using the products, which mistakes

or unintended operations they are doing, which parts of a device wear out first in a real-world

situation, which components of an industrial machine are more likely to fail given usage time and

sensor readings (predictive maintenance), understand automatically if a produced part is good or

faulty based only on the images of the given component and on a huge collections of images of

good and faulty components.

The ability to correctly extract, interpret and leverage the information contained in the collected

data is thus a huge added value and a competitive advantage for the companies who undertake the

often significant effort to develop it. 
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Cloud providers, such as Amazon Web Services AWS, nowadays offers a wide range of Machine

Learning centered services in order to meet the most common use cases of customers. On AWS

currently, these ML backed services are available:

Amazon Comprehend: A service to extract information from unstructured text (e.g. mails,

tickets, etc)

Amazon Lex: A service allowing you to deploy a conversation agent (see our previous article)

Amazon Textract: extract digital text from structured and unstructured scanned documents

Amazon Translate: Translate text into another language

Amazon Transcribe and Amazon Polly: Convert speech to text and text to speech

Amazon Recommendations and Forecasting: use Amazon.com recommendation and forecast

engine for online shops

Amazon Rekognition: extract information from images and videos

In addition to these completely managed services AWS also offers a more configurable,

customizable and generic service: AWS SageMaker. In the second part of this article, we’ll explain

the structure of a SageMaker project, how to create a trivial inference model and how to deploy a

SageMaker backed HTTP Machine Learning service.

SageMaker: Building Block

After opening the AWS SageMaker Console our attention is immediately drawn to the sidebar

containing the list of the SageMaker components and configurations. As one can see the

SageMaker service consists of four “subservices”:

Ground Truth: This service allows one to label an existing dataset (for example creating the

binding boxes for a whole images dataset). In order to do so, the service leverages the wide

human workforce available through Amazon Mechanical Turk. It is also possible to use existing

models to label data forwarding only low confidence occurrences to the human workforce.

Notebook: This service allows one to launch with just a few clicks a Jupyter notebook instance

pre-configured with the most common data mining and ML libraries (Conda with Tensorflow or

PyTorch). It is possible to launch the Notebook instances both inside the Vpc (for improved

access and network control) or outside the Vpc, similarly to what can also be done with AWS

Lambda functions. 

Training: Automated deploy of training jobs. The data scientist can select the relevant model to

train choosing from a conspicuous library of existing generic models, once a model is trained it is

possible to deploy it

Models: Once an algorithm is trained on a given training dataset it is possible to deploy it using

the model section.

It is also possible to deploy complete SageMaker projects directly from the AWS Marketplace to

tackle specific tasks.  The ML projects offered in the marketplace is quite comprehensive and it is

advisable to look for a project which is capable of executing the needed task in the marketplace

before starting the development of a new project.

http://amazon.com/


The Creation of a Sample ML project

When developing an ML service usually the first step is to create a Notebook instance using the

AWS console. As shown in the screenshot it is possible to choose the name of the instance, the IAM

role it will use and decide whether to put the instance in our VPC (in this case it is also possible to

choose the security group and the subnet).

Even if we chose not to put the instance in our VPC,  the Jupiter notebook can only be reached

using a pre-assigned URL generated from our AWS credentials. Once we click on open Jupiter we

are presented with a standard Jupyter interface:

AWS provides a series of examples in order to help data scientists grow confident with SageMaker

which can be found in the SageMaker Examples tab. In this article, we will follow the Image

classification example using the Caltech 256 Dataset. In order to start, we can just click on Use

Image-classification-fulltraining.ipynb

A normal Jupiter notebook is shown and we can follow the provided instructions.



First of all, you need to create an S3 bucket and we should check that the role we assigned to the

Notebook instance has the permission to read and write in that bucket. 

Running the template you’ll then download the Caltech 256 dataset and prepare the training job of

the image classification algorithm. The algorithm used in this example is the AWS Image

Classification Algorithm which uses a convolutional neural network (ResNet). AWS provides a wide

array of general algorithms already optimized for SageMaker (see AWS docs) however, it is also

possible to deploy a custom model to be trained and packaged in a docker container.

It is important to understand how to split the dataset into two parts: the first one for training and

the second for the validation step. In this example each image class (ball, bathtub, Mars, riffle, etc)

is divided into two sets: 60 images for training and the rest for validation.

Before starting the training it is essential to choose sensible Hyperparameters: a wrong choice will

result in non-performing algorithms. The choice of these parameters is often a trial and error

process and for this particular application, the most relevant parameters are the learning rate and

the epochs number.

The learning rate is the length of the steepest descent algorithm vector: too high and you will

overshoot the optimum, too low and the training will take forever. The epochs number is how many

time the training dataset is passed forward and backward through the neural network: an epoch

number which is too low will result in an underfitting of the data but also in a low training time

while a too high epoch will result in an overfitting of data and very long training time. Both

overfitting and underfitting are better to be avoided because the trained model will perform badly

on validation data.

For example, using the default values provided by AWS in this example the training time is very low

(just a few minutes) but the model will classify every image with something reddish and vaguely

round in it as… Mars! (Not so precise :))

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html


Once the training is complete it is time to deploy and test the trained model. First of all, we can

create the model using the training result:

model_name="DEMO-full-image-classification-model" + time.strftime('-%Y-%m-%d-%H-%M-%S'
, time.gmtime()) 
print(model_name) 
info = sage.describe_training_job(TrainingJobName=job_name) 
model_data = info['ModelArtifacts']['S3ModelArtifacts'] 
print(model_data) 

hosting_image = get_image_uri(boto3.Session().region_name, 'image-classification') 

primary_container = { 
    'Image': hosting_image, 
    'ModelDataUrl': model_data, 
} 

create_model_response = sage.create_model( 
    ModelName = model_name, 
    ExecutionRoleArn = role, 
    PrimaryContainer = primary_container) 

print(create_model_response['ModelArn'])

After this, it is time to choose a part of the dataset to be used for the testing: in this example,

bathtubs were chosen:

batch_input = 's3://{}/image-classification-full-training/test/'.format(bucket) 
test_images = '/tmp/images/008.bathtub' 

!aws s3 cp $test_images $batch_input --recursive --quiet

Now we can create a batch job to feed all the test images to the model to be classified.

timestamp = time.strftime('-%Y-%m-%d-%H-%M-%S', time.gmtime()) 
batch_job_name = "image-classification-model" + timestamp 
request = \ 
{ 
    "TransformJobName": batch_job_name, 
    "ModelName": model_name, 
    "MaxConcurrentTransforms": 16, 
    "MaxPayloadInMB": 6, 
    "BatchStrategy": "SingleRecord", 
    "TransformOutput": { 
        "S3OutputPath": 's3://{}/{}/output'.format(bucket, batch_job_name) 



    }, 
    "TransformInput": { 
        "DataSource": { 
            "S3DataSource": { 
                "S3DataType": "S3Prefix", 
                "S3Uri": batch_input 
            } 
        },
        "ContentType": "application/x-image", 
        "SplitType": "None", 
        "CompressionType": "None" 
    }, 
    "TransformResources": { 
            "InstanceType": "ml.p2.xlarge", 
            "InstanceCount": 1 
    }
} 

sagemaker = boto3.client('sagemaker') 
sagemaker.create_transform_job(**request) 

print("Created Transform job with name: ", batch_job_name) 

while(True): 
    response = sagemaker.describe_transform_job(TransformJobName=batch_job_name) 
    status = response['TransformJobStatus'] 
    if status == 'Completed': 
        print("Transform job ended with status: " + status) 
        break 
    if status == 'Failed': 
        message = response['FailureReason'] 
        print('Transform failed with the following error: {}'.format(message)) 
        raise Exception('Transform job failed')  
    time.sleep(30)

Creating a batch job will start an EC2 of the chosen type to classify the images. Once the process

is finished we can check the results: if only two epochs were used while training very few images

will be classified correctly.

However, if we are satisfied with the result we can create an endpoint and thus deploy the model:

from time import gmtime, strftime 
job_name_prefix = "test" 

timestamp = time.strftime('-%Y-%m-%d-%H-%M-%S', time.gmtime()) 
endpoint_config_name = job_name_prefix + '-epc-' + timestamp
endpoint_config_response = sage.create_endpoint_config( 
    EndpointConfigName = endpoint_config_name, 
    ProductionVariants=[{ 
        'InstanceType':'ml.m4.xlarge', 
        'InitialInstanceCount':1, 
        'ModelName':model_name, 
        'VariantName':'AllTraffic'}]) 

timestamp = time.strftime('-%Y-%m-%d-%H-%M-%S', time.gmtime()) 
endpoint_name = job_name_prefix + '-ep-' + timestamp 
print('Endpoint name: {}'.format(endpoint_name)) 



endpoint_params = { 
    'EndpointName': endpoint_name, 
    'EndpointConfigName': endpoint_config_name, 
} 
endpoint_response = sagemaker.create_endpoint(**endpoint_params)

Once the endpoint is created successfully we can send images to it through HTTP using the aws

SDKs, for example using python boto3.

The command is:

runtime.invoke_endpoint(EndpointName=endpoint_name,  
                                   ContentType='application/x-image',  
                                   Body=payload)

where the

payload

is the image.

This endpoint can thus be used both by an application deployed on AWS (e.g. Lambda functions,

docker Microservices running on Fargate, applications deployed on EC2s) and also by applications

running on-premise or even directly by clients.

To conclude we presented a brief review of AWS Machine Learning services and in particular, we

focused on how to deploy a simple ML application using SageMaker. If you are interested in this

topic or have any questions contact us!

https://www.besharp.it/en/contact-us/
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