
beSharp | 11 September 2018

GO SERVERLESS! PART 1: LET’S CREATE A FILE

SHARING APPLICATION BASED ON AWS SERVICES

AWS Lambda CI/CD Continuous Delivery DevOps

Go to part 2 | Go to part 3

In recent years, the term “Serverless” has become more and more popular in the IT world.

Another Buzzword? Or is it indeed possible to develop an application that does not use any

servers, as this word would suggest? Let’s try to clarify this possible misunderstanding…

Serverless is a Cloud paradigm that allows applications to run independently from the underlying

infrastructure. Thanks to Cloud services such as (for example) AWS Lambda, API Gateway, and

EKS, it is possible to develop applications for which provisioning, scalability, and management

operations are carried out transparently and automatically, without manual intervention from those

who write the code.

This new technology has many advantages which improve the experiences of both user and

developer. Knowing how to make the most of them is crucial to creating highly scalable, high-

performance competitive solutions.

With this 3-article series, we will explain how to build a file-sharing system complete with login,

“drag and drop” capability and file sharing using links, exploiting the potential of serverless

technology and the services provided by AWS.

https://blog.besharp.it/en/
https://blog.besharp.it/en/tag/aws-lambda-en/
https://blog.besharp.it/en/tag/ci-cd-en/
https://blog.besharp.it/en/tag/continuous-delivery-en/
https://blog.besharp.it/en/tag/devops-en/
https://blog.besharp.it/en/go-serverless-part-2-lets-set-up-the-cloud-infrastructure-for-the-file-sharing-application/
https://blog.besharp.it/en/go-serverless-part-3-event-driven-software-e-triggers/


Amazon offers a wide range of managed services that can be used to implement completely

serverless architecture rapidly: we will, therefore, create infrastructure as shown in the illustration

below, then analyze in detail how to configure the necessary triggers for responding to events, such

as file uploads.

The application will consist of a static front-end and a range of back-end APIs, both protected by

authentication. File information and sharing data will be saved to a key-value type database, while

all files will be saved to object storage.

There is an interesting point worth noting: user uploads will be carried out directly to object

storage through a specific authorization mechanism. This will allow the application to scale

rapidly to face increasing requests, minimizing the resources to allocate in advance and their

related costs.

In order to create this solution, we will employ some of the most interesting Serverless services,

such as S3 for the storage of objects, DynamoDB as a database, Lambda for the execution of back-

end APIs, API Gateway to display the APIs, CloudFront as a CDN to serve the front-end,

and Cognito for user sign-ins and authentication services.

We will also tackle the topic of automatic code deployment, creating a pipeline of Continuous

Deployment/Continuous Integration that allows software modifications to be issued quickly and

automatically.



To be specific, two separate pipelines will be created to handle the front and back-end CD/CI. The

back-end one will use a CloudFormation template to carry out Lambda function provisioning and

update the code, while the front-end one will copy assets to the appropriate bucket and manage

the CDN with the necessary invalidations.

Let’s start illustrating the services that are utilized according to design choices.

Amazon S3

“Amazon S3 is an object storage service created to memorize and restore any volume of data from

any source. It is a service that provides extremely durable, readily available storage infrastructure

with unlimited scalability, at a lower cost.”

We will use S3 both as a source for files that make up the front-end application and as storage for

user-uploaded files. Using this service allows for a virtually unlimited, highly-available space at a

lower cost.

To make the implementation more secure, we will use two separate buckets to subdivide better

permissions and keep application storage strictly isolated from user data storage. 

The bucket reserved for static assets will be the source for the CDN utilized to distribute the front-

end to clients.

CloudFront

“Amazon CloudFront is a global Content Delivery Network (CDN) that allows the distribution of

data, videos, applications, and APIs to users with minimal latency and high transfer rates.”

We will use CloudFront to serve the front-end of our application. In addition to improving

performance and user experience, it also provides protection against DDoS attacks and reduces

access costs to S3 for files that are frequently requested.

DynamoDB

“Amazon DynamoDB is a non-relational database that provides reliable performance on any scale.

It is a multi-master, multi-region, fully-managed database that provides a constant latency of a few

milliseconds, integrated security, a backup and restore service and a memory cache.”

DynamoDB wins over other valid DBMS because the application saves metadata related to the

uploaded files and their sharing settings, where everything is strong “file centric.” The data

structure fits well with the key-value model of DynamoDB, a condition which among other things is

made possible by delegating the management of authorizations and user information to Cognito.

Furthermore, by choosing to use DynamoDB, the application benefits from a database in an almost

fully automatic way. The database is fully managed, readily available, and easily and automatically



horizontally-scalable.

Cognito

“Amazon Cognito allows tools to be quickly and easily added for logging, access and Web app and

mobile device access controls. Amazon Cognito allows resources to be recalibrated for millions of

users and supports access with social identity providers like Facebook, Google and Amazon and

corporate identity providers via SAML 2.0.”

We chose to delegate authentication and user data management to a managed service. This allows

us to limit the attack perimeter of the service we’re building, increase login and authentication

possibilities, and provide a fast, bulletproof integration with API Gateway. The latter allows us to

reduce costs because all the effort of authentication is carried out by the gateway and does not

affect the Lambdas’ calculation time. Furthermore, any incorrect login attempts or calls made with

expired or incorrect tokens will never reach the application but will be handled directly on the

architecture’s outer perimeter.

The managed user data service also allows us to eliminate database traffic to find key information

about users. It minimizes maintenance, the securing of tables with sensitive data, and credential

management.

Lambda

“AWS Lambda allows code to be run without having to manage servers or carry out provisioning.

Rates are calculated based on processing times, so no charges are made when the code is not

running.”

The back-end will be developed entirely with AWS Lambda. This technology — key to the serverless

philosophy — allows us to pay for single operations and only for the time it is actually used,

eliminating wastage of processing power and costs when the system is idle. It also saves us from

having to configure and test an adequate auto-scaling policy.

API Gateway

“Amazon API Gateway is a fully managed service that simplifies for developers the creation,

publication, maintenance, monitoring, and protection of APIs on any scale.”

In this case, it’s an obvious choice; only AWS API Gateway has all the hooks and integrations

necessary for seamless and effective assimilation into the application architecture. The main goal is

to provide a readily available, high performance, reliable interface for back-end lambda functions. It

also allows integration with Cognito for authenticating calls and passing them on to the back-end

only if they are correctly authenticated and legitimate, effectively blocking all invalid requests.

Another advantage is that we can easily integrate CloudFront to cache the back-end responses in

order to reduce computing times and, at the same time, increase application responsiveness by

reducing latency.



In the next articles, we will take a detailed look at the application structure, serverless

infrastructure, and the triggers to configure in order to respond to events significant to the

application.

Stay tuned!

Go to part 2 | Go to part 3

https://blog.besharp.it/en/go-serverless-part-2-lets-set-up-the-cloud-infrastructure-for-the-file-sharing-application/
https://blog.besharp.it/en/go-serverless-part-3-event-driven-software-e-triggers/


beSharp

Dal 2011 beSharp guida le aziende italiane sul Cloud. Dalla piccola impresa

alla grande multinazionale, dal manifatturiero al terziario avanzato, aiutiamo

le realtà più all’avanguardia a realizzare progetti innovativi in campo IT.

Get in touch

beSharp.it

proud2becloud@besharp.it

Copyright © 2011-2021 by beSharp srl - P.IVA IT02415160189

https://www.besharp.it/
mailto:proud2becloud@besharp.it

