we make IT run.

GO SERVERLESS! PART 2: LET’S SET UP THE CLOUD
INFRASTRUCTURE FOR THE FILE-SHARING
APPLICATION

AWS Lambda Cl/CD Continuous Delivery DevOps

beSharp | 25 September 2018

Go to part 1| Go to part 3

The serverless approach is becoming more and more popular in the development world. But how
can we actually take advantage of it to create auto-scalable and resilient applications? That’s the
point we are focusing on in this 3-article series explaining how to set up a serverless File Sharing

platform.

In particular, in this article we’re setting up the infrastructure for our application, focusing on the
best practices to follow for a correct and effective implementation. Moreover, as revealed in

our first article, we are also realizing Continuous Integration and Continuous Delivery pipelines.

Let’s start with the application infrastructure.

https://blog.besharp.it/en/
https://blog.besharp.it/en/tag/aws-lambda-en/
https://blog.besharp.it/en/tag/ci-cd-en/
https://blog.besharp.it/en/tag/continuous-delivery-en/
https://blog.besharp.it/en/tag/devops-en/
https://blog.besharp.it/?p=557
https://blog.besharp.it/?p=599
https://blog.besharp.it/?p=557

As we aren’t analyzing code or other specific development subjects for now (a deep dive into them
will be subject of our third article), we are going to use static pages and a lambda function to test
the infrastructure we are about to create.

As shown in the graphic representation below, our future infrastructure will be composed by
a front-end—a single page app deployed on Amazon S3 and served through CloudFront—and
a back-end—a REST API built using APl Gateway and Lambda.

To create the infrastructure for our serverless application, we first need to provide and set-up the
following resources:

For the front-end

e A private S3 bucket

¢ A CloudFront distribution with permissions attached allowing it to access the private S3 bucket

For the back-end

¢ A lambda function to test the integration

e A Cognito User Pool

A private S3 bucket for user’s uploads

A DynamoDB table

An API (made with AWS API Gateway)

Front-end setup

First of all, let’s create the S3 bucket we’ll upload the javascript and HTML application. Note that
this bucket will also act as a source for CloudFront distribution. You can set it as “private” because

we’ll configure the distribution so that CloudFront can access to it. We will learn how to do so later
in this article.

Create bucket b 4

@ Name and region @ Configure options @ Set permissions @ Review

Name and region

Bucket name

fileshare-example]
]

|

Region

EU (Ireland)

Copy settings from an existing bucket

Create bucket X

@ Name and region @ Configure options @ Set permissions @ Review

Manage users

User ID Objects Object permissions

Read Write Read Write

Access for other AWS account 4+ Add account
N

Account Objects Object permissions

Manage public permissions

Do not grant public read access to this bucket (Recommended)

Manage system permissions

Do not grant Amazon S3 Log Delivery group write access to this bucket ~

We now need to verify that the front-end works appropriately; let’s upload an example file.

<html>
<head>
<title>Esempio</title>
</head>

<body>
<h1>It Works</h1l>
<hr/>
<p>This is a simple test page</p>
</body>
</html>

Name the file “index.htm/’ and upload it to the just created S3 bucket.

Upload X

@ Select files @ Set permissions @ Set properties @ Review

1Files Size: 139.0B Target path: fileshare-example

index.html
- 13 B

Upload

@ Select files @ Set permissions @ Set properties @ Review

1Files Size: 139.0B Target path: fileshare-example

Manage users
User ID Objects Object permissions

Read Write [Read Write

Access for other AWS account 4 Add account
Account Objects Object permissions

Manage public permissions

Do not grant public read access to this object(s) (Recommended)

Upload Next

Once the bucket is set up, we are ready to create the CloudFront distribution using it as a source.

In this way, we will be able to distribute the file we’ve just uploaded (not yet accessible!).

When configuring the CloudFront distribution, it is essential to enable the “Restrict Bucket

Access” option to keep the bucket private.

Another important thing to do is to configure the “Origin Access Identity” option so that
CloudFront can access the bucket created, even if it’s private. It is possible to delegate to the

wizard both the creation of an Access Identity and the Bucket Policy update.

Origin Settings

Origin Domain Name | filgshare-example 3. amazonaws com (i}
Origin Path (1]
OriginID | S3-fileshare-example (i]
Restrict Bucket Access @ Yes [i]
No
Origin Access Identity @ Create a New Identity o
Use an Existing Identity
Comment | access-identity-fileshare (i
Grant Read Permissions on ® Yes, Update Bucket Policy (i
Bucket () No, | Will Update Permissions
Origin Custom Headers Header Name Value [i]

L4}

Regarding caching behavior, activate HTTP redirect to HTTPS and enable automatic compression

of the delivered content. By doing so, you will be able to improve performances.

Default Cache Behavior Settings

Path Pattern Default (*) [i]
Viewer Protocol Policy HTTP and HTTPS [i]
® Redirect HTTP to HTTPS
HTTPS Only
Allowed HTTP Methods GET, HEAD [i]

® GET, HEAD, OPTIONS
GET, HEAD, OPTIONS, PUT, POST, PATCH, DELETE

Field-level Encryption Config v (1]

Cached HTTP Methods GET, HEAD (Cached by default) o
OPTIONS

Cache Based on Selected

None (Improves Caching) «
Request Headers

Learn More

Object Caching ® Use Origin Cache Headers [i]
Customize

Learn More

Minimum TTL g

Maximum TTL
Default TTL
Forward Cookies

Query String Forwarding and
Caching

31536000
86400
None (Improves Caching -

None (Improves Caching) w

Smooth Streaming Yes
* No

e @ @ @ @ e e

Restrict Viewer Access Yes
(Use Signed URLs or @ No
Signed Cookies)

@

Compress Objects Automatically @ Yes
No

Don’t forget to set “index.htm/” as the default file to be served.

Supported HTTP Versions ® HTTP/2, HTTP/1.1, HTTP/1.0 [i]
HTTP/1.1, HTTP/1.0

Default Root Object index html i

The distribution creation process is usually slow, so don’t panic if the process takes several minutes
to complete. Note that even if the distribution has been launched, it is frequent to encounter access
errors. Just don’t worry about that, they usually resolve in minutes (max. 1 hour): this kind of errors

are due to the fact that DNS propagation usually takes time.

Once the distribution is ready, a public URL will be available. By using it, it will be possible to check
the front-end is actually working. If everything has been properly configured, something similar to

the picture below will be displayed:

Esempio - Mozilla Firefox

Esempio X |+

<« cC oa T < o.diront.net - D% »

It Works

This is a simple test page

We are at the end of the front-end setup.

The S3 bucket is served in the most efficient and cost-effective way through a CDN. To update the

application, the only action required is to upload the new version to the S3 bucket.

Please note that if updating files already saved to the bucket, you won't be able to see any change,

unless you first invalidate the cache of the distribution created.

Back-end setup

Let’s go deeper into the infrastructure back-end setup and creation.

The first thing we need to do is creating a lambda function. It will come in handy for testing by

returning a “success” status and a given message.

As already said, it is not the time to focus on the real application yet, we first need to create each

part of the infrastructure. So, be patient till the next article @

Let’'s go on with lambda function creation. First of all, we need to set up Python as Runtime and to

define a role with basic permissions.

Here is an example of a function returning a message:

def lambda_handler(event, context):

response = {
"statusCode": 200,
"body": 'Hello from Lambda!'

return response

Let’s now test the function: the output coming out from a working function is similar to the

example below:
The next step for us is to take care of the provisioning of the resources left.

Let’s create another S3 bucket. This will be the place where users’ files will be uploaded. Let’s
create it in the same way we created the bucket needed for the front-end setup. Let’s keep it
private, as above. Don’t forget to take note of the bucket name. We will need it later while

configuring the application.

Create now a DynamoDB table. It will contain share metadata and information about the files. Keep

all the default values during the table creation and specify “sharelD” as the primary partition key.

Dettagli tabella

Nome tabella fs-share
Chiave di partizione primaria sharelD (Stringa)
Chiave di ordinamento primaria
Recupero temporizzate -
Crittografia DISABILITATO
Attributo Time to Live (Periodo di vita)
Stato tabella Creazione in corso
Data di creazione 19 settembre 2018 17:10:51 UTC+2
Unita di capacita in lettura con provisioning 5(Auto Scaling Disabilitato)

Unita di capacita in scrittura con provisioning 5(Auto Scaling Disabilitato)
Munvin Adallfiilbimn widowiama

It’s now time to set up Cognito to prepare the authentication.
Let’s start creating and configuring a Cognito User Pool.

The wizard allows us to customize some useful behaviors; to get a working app, we need a Pool
where users can sign in through an email. Email address will be verified through the Cognito secure

code.
Last but not least: creating a client app. Remember to take note of its ID!

Name first the User Pool and launch the wizard

Create a user pool l:’

What do you want to name your user pool?

scriptive name so you can easily Kentify tin the future

How do you want to create your user pool?

Review defaults Step through settings &

Start by reviewing the defaulls and then Step through each setting lo make your
2 choices

Configure then the authentication process and the profile fields.

Create a user pool

How do you want your end users to sign in?

e p—]

Which standard attributes do you want to require?

It’s time to create the client app taking note of its ID. Note that we don’t need to generate secrets.

This is not required when using Cognito through a web app.

Create a user pool

Hame Which app clients will have access to this user pool?

4 b wil b given e (D1 and an opbonal secrel ey 1 access s user pooi

FsPool
| cenersemngs Which app clients will have access to this user pool?

below will be given a urique I and an aptonal secret key o access s user pod

Cognito is now correctly configured.

The last building block we need for our infrastructure setup is an API built through APl Gateway. It

allows the front-end to access to lambda back-end functionalities thanks to HTTPS requests.

It acts as an interface between user requests and the lambda function we created. Moreover, it

automatically manages requests authentication making use of Cognito User Pool.

As we only need it for testing reasons, let’s create a simple API containing only a GET method

triggering the lambda function.

Choose the integration point for your new method.

Integration type ® Lambda Function @
HTTP @
Mock &
AWS Service @
VPC Link @

Use Lambda Proxy integration ' &
Lambda Region gy-west-1
o

Lambda Function |FSTest

Use Default Timeout ¥ &

The integration is completed and ready to be tested

Request: /
Status: 200
Lalency: 212 ms
Response Body
i
tatuscode": 200
b Hello fron Lambx
}
Response Head
{ Trace-1d* : "Root=1-3ba26c3d-470c08b35858 16ab2fe6640d; Sanpled=0 t-Typ 1 i

In our next article, we are going to finally focus on the application and the CD/CI pipeline. We will
learn how to integrate Cognito with APl Gateway so that we can take advantage of the automatic

authentication.

Stay tuned! @

Go to part 1| Go to part 3

https://blog.besharp.it/?p=557
https://blog.besharp.it/?p=599

we make [T run

beSharp

Dal 2011 beSharp guida le aziende italiane sul Cloud. Dalla piccola impresa
alla grande multinazionale, dal manifatturiero al terziario avanzato, aiutiamo
le realta piu all’lavanguardia a realizzare progetti innovativi in campo IT.

Get in touch

beSharp.it
proud2becloud@besharp.it

Copyright © 2011-2021 by beSharp srl - P.IVA 1T0O2415160189

https://www.besharp.it/
mailto:proud2becloud@besharp.it

